The Blue Genet/L computer is a massively parallel supercomputer based on IBM system-on-a-chip technology. It is designed to scale to 65,536 dual-processor nodes, with a peak performance of 360 teraflops. This paper describes the project objectives and provides an overview of the system architecture that resulted. We discuss our application-based approach and rationale for a low-power, highly integrated design. The key architectural features of Blue Gene/L are introduced in this paper: the link chip component and five Blue Gene/L networks, the PowerPCt 440 core and floatingpoint enhancements, the on-chip and off-chip distributed memory system, the node-and system-level design for high reliability, and the comprehensive approach to fault isolation.
The main interconnect of the massively parallel Blue Genet/L is a three-dimensional torus network with dynamic virtual cut-through routing. This paper describes both the architecture and the microarchitecture of the torus and a network performance simulator. Both simulation results and hardware measurements are presented.
BlueGene/L is currently the world's fastest supercomputer. It consists of a large number of low power dual-processor compute nodes interconnected by high speed torus and collective networks. Because compute nodes do not have shared memory, MPI is the the natural programming model for this machine. The BlueGene/L MPI library is a port of MPICH2.In this paper we discuss the implementation of MPI collectives on BlueGene/L. The MPICH2 implementation of MPI collectives is based on point-to-point communication primitives. This turns out to be suboptimal for a number of reasons. Machine-optimized MPI collectives are necessary to harness the performance of BlueGene/L. We discuss these optimized MPI collectives, describing the algorithms and presenting performance results measured with targeted micro-benchmarks on real BlueGene/L hardware with up to 4096 compute nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.