Active learning is well-suited to many problems in natural language processing, where unlabeled data may be abundant but annotation is slow and expensive. This paper aims to shed light on the best active learning approaches for sequence labeling tasks such as information extraction and document segmentation. We survey previously used query selection strategies for sequence models, and propose several novel algorithms to address their shortcomings. We also conduct a large-scale empirical comparison using multiple corpora, which demonstrates that our proposed methods advance the state of the art.
Whereas people learn many different types of knowledge from diverse experiences over many years, and become better learners over time, most current machine learning systems are much more narrow, learning just a single function or data model based on statistical analysis of a single data set. We suggest that people learn better than computers precisely because of this difference, and we suggest a key direction for machine learning research is to develop software architectures that enable intelligent agents to also learn many types of knowledge, continuously over many years, and to become better learners over time. In this paper we define more precisely this never-ending learning paradigm for machine learning, and we present one case study: the Never-Ending Language Learner (NELL), which achieves a number of the desired properties of a never-ending learner. NELL has been learning to read the Web 24hrs/ day since January 2010, and so far has acquired a knowledge base with 120mn diverse, confidence-weighted beliefs (e.g., servedWith(tea,biscuits)), while learning thousands of interrelated functions that continually improve its reading competence over time. NELL has also learned to reason over its knowledge base to infer new beliefs it has not yet read from those it has, and NELL is inventing new relational predicates to extend the ontology it uses to represent beliefs. We describe the design of NELL, experimental results illustrating its behavior, and discuss both its successes and shortcomings as a case study in never-ending learning. NELL can be tracked online at http://rtw.ml.cmu.edu, and followed on Twitter at @CMUNELL. 2. RELATED WORK Previous research has considered the problem of designing machine learning agents that persist over long periods research highlights
ABNER (A Biomedical Named Entity Recognizer) is an open source software tool for molecular biology text mining. At its core is a machine learning system using conditional random fields with a variety of orthographic and contextual features. The latest version is 1.5, which has an intuitive graphical interface and includes two modules for tagging entities (e.g. protein and cell line) trained on standard corpora, for which performance is roughly state of the art. It also includes a Java application programming interface allowing users to incorporate ABNER into their own systems and train models on new corpora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.