Right ventricular papillary muscles from normal rabbits and rabbits with sustained pulmonary artery constriction (67% decrease in external diameter) were studied at several resting muscle lengths and at an early instant in the isometric twitch. Instantaneous force-velocity data were obtained at 30-38% of time to peak tension (TPT) and at 96%, 98%, and 100% of the resting muscle length at which active twitch tension was maximal. Unloaded shortening velocity (Vmax) was estimated with a linearized form of the Hill hyperbolic formula, and was depressed in hypertrophy to 36% less than normal. We found that Vmax did not change with muscle length in the normal or hypertrophied muscles; therefore there was a length- and time-independent depression of contractile element shortening capacity that was consistent with previous work from this laboratory which demonstrated a depression of myosin and actomyosin ATPase activity in hypertrophy.
The goal implicit in the research reviewed above is to describe the contractile behavior of heart muscle in terms of crossbridge and filament behavior. It is necessary to elucidate these details in cardiac muscle because of the distinct biochemical differences between skeletal and cardiac myosin. As is evident in this review, significant advances have been made toward describing unique mechanical properties of cardiac muscle crossbridges. Several major problems now require attention: (a) Activation parameters are labile, making mechanical measurements sensitive to measurement perturbation; (b) significant structural inhomogeneities at the cellular and sarcomere level prevent precise assignment of externally measured force to internal structures (force generators, passive elements) within whole cardiac muscle and individual cells; (c) high resting stiffness and forces of poorly understood origin and properties confound attempts to interpret force measurements and dynamics. The differences between heart and skeletal muscle myosin may provide the means for identifying structural counterparts of the Huxley-Simmons model (33); they may also be useful in evaluating the electrostatic and quantum-mechanical models.
The measurement of active and passive force levels in heart muscle requires short-and long-term base-line stability. The capacitance force transducer described here represents an optimization of the relationship between sensitivity, compliance, and frequency response in a design that minimizes long-term base-line drift related to thermal gradients within the apparatus. Thermal stability of the instrument is obtained with the use of quartz and Invar in the construction of the variable capacitor, the maintenance of internal transducer temperature at a constant level well above ambient, and the use of thermally insulating air gaps. Sensitivity ranges from 1.0 to 2.0 V/g wt in the several instruments tested, the output is linear, compliance is negligible with static loads up to 6 g wt, hysteresis is not significant with transient loading with 20 g wt, and long-term drift is greater than or equal to 0.050 g wt. These instruments are designed for use with myocardial preparations but can be adapted for skeletal muscle experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.