The increasing concern about the environmental impact of ingredients largely used as sunscreens today is pushing research towards new frontiers for the synthesis and degradation potential of innovative sun protection structures. This study deals with the design, synthesis, efficacy evaluation, and environmental impact of new photo-stable molecules at extended electronic conjugation and which have the ‘charge-transfer’ type of optical transition (push and pull). They efficiently perform absorption of electro-magnetic radiation in the UVB and UVA regions. A preliminary screening, dealing with a whole series of aromatic donors, led to the selection of a key substrate derived from waste material, provided with low environmental impact and largely available on the market. As far as the acceptor was concerned, an ester with cyan-acrylic structure and functionalized with aliphatic chains emerged as the most suitable. This allowed a shift of the λ of absorption in the range of the ultraviolet wavelengths. The synthesis procedures include an acid-catalyst-fitted esterification, condensation, and cold crystallization. It was continuously monitored with suitable characterization instruments (GC-MS, 1H NMR, 13C NMR), in order to avoid by-products and parasitic reactions. The resulting structures (patent pending) are composed by a furan core condensed with cyano-acrylic esters, derivatized with branched chains of hydrocarbons of medium length. The obtained structures are capable of good absorption in the range of wavelengths between 300 and 400 nm. Because of their structures, the new molecules are largely soluble in many common oils and cosmetic ingredients. The new molecules have been successively evaluated in terms of photo-stability, biodegradability, compatibility, and UVB-UVA protection capability, both in-vivo and in-vitro, in comparison with existing sunscreens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.