The objective of this paper is to numerically study the behavior pipe pile under axial compression embedded in organic soil has been numerically predicted. The pipe pile used in the study has been produced by steel and it has outer and inner diameters of 20 mm and 15 mm, respectively. The pile embedded in organic soil, which has the pile length ratios of 10, 20 and 30 (L/D), has been exposed to the axial load for different diameter ratios (d/D = 0, 0.25, 0.50 and 0.75). Numerical analyses have been performed by using Plaxis 3D computer program which is based on finite element method. The capability of the numerical analysis in the prediction of the load capacity of pipe pile has been studied. It has been understood that the results obtained from numerical analysis and experiment are in a good agreement, and then it has been observed in the parametric study that the load capacity of single pipe pile increases with the increase of the pile length and the wall thickness.
In this paper, responses of a single pile embedded in sand soil (loose and dense) under dynamic loading (sinusoidal dynamic vibrations of 0.1 g to 0.5 g) have been investigated by two-dimensional analysis using the finite element method (FEM). Viscous (dashpot) boundaries have been used for taking the boundary effects of far-field into account. The applicability and accuracy of site responses of two-dimensional analysis due to the FEM modelling have been well verified with one-dimensional site responses. The results indicate that the relative density of sand (loose, dense) becomes prominent for the displacements of the pile, specifically under the frequency effects of resonance. While the pile in loose sand causes the displacements of 0.1 m to 0.5 m, the pile in dense sand leads to the displacements of 0.05 m to 0.25 m, proportionally with the dynamic loads from 0.1 g to 0.5 g. Moreover, the displacements reach their peak value at the frequency ratio of the resonance case. Viscous boundaries are found sufficient for modelling excessive displacements due to dynamic loading. However, the displacements reveal that high vibrations (> 0.1 g for loose sand, > 0.2 g for dense sand) influencing the pile deformations are critical for the issues of settlements. This is more significant for the resonance case in order for ensuring sufficient design. Consequently, the findings from the study are promising good contributions for pile design under the dynamic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.