Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different nonpolymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.
Periodontal disease is a common complication, and conventional periodontal surgery can lead to severe bleeding. Different membranes have been used for periodontal treatment with limitations, such as improper biodegradation, poor mechanical property, and no effective hemostatic property. Guided tissue regeneration (GTR) membranes favoring periodontal regeneration were prepared to overcome these shortcomings. The mucilage of the chia seed was extracted and utilized to prepare the guided tissue regeneration (GTR) membrane. Lignin having antibacterial properties was used to synthesize lignin-mediated ZnO nanoparticles (∼Lignin@ZnO) followed by characterization with analytical techniques like Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, and scanning electron microscope (SEM). To fabricate the GTR membrane, extracted mucilage, Lignin@ZnO, and polyvinyl alcohol (PVA) were mixed in different ratios to obtain a thin film. The fabricated GTR membrane was evaluated using a dynamic fatigue analyzer for mechanical properties. Appropriate degradation rates were approved by degradability analysis in water for different intervals of time. The fabricated GTR membrane showed excellent antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.