Subdivision surface schemes are used to produce smooth shapes, which are applied for modelling in computer-aided geometric design. In this paper, a new and efficient numerical technique is presented to estimate the error bound and subdivision depth of the uniform Doo-Sabin subdivision scheme. In this technique, first, a result for computing bounds between P k (a polygon at k th level) and P ∞ (limit surface) of the Doo-Sabin scheme is obtained. After this, subdivision depth (the number of iterations) is computed by using the user-defined error tolerance. In addition, the results of the proposed technique are verified by taking distinct valence numbers of the Doo-Sabin surface scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.