OBJECTIVE:The present study aimed to assess the validity and reliability of Geriatric Depression-15 Scale (GDS-15) in Turkish older adults and to compare the results with Diagnostic and Statistical Manual of Mental Disorders-fifth edition (DSM-5) depression criteria.METHODS:A total of 329 outpatients were enrolled. In the first step, the patients underwent the Mini-Mental State Examination. After assessing whether the patients meet the diagnosis of depression based on DSM-5 diagnostic criteria, another researcher applied the long form of GDS. After sorting the items of short form out of the long form, two separate scores were obtained. The scores of GDS-30 and GDS-15 scales were compared with the scores of DSM-5.RESULTS:The correlation of GDS-30 with GDS-15 was r=0.966 (p<0.001). The analysis performed considering DSM-5 criteria revealed that the sensitivity, specificity, positive predictive value, and negative predictive value of GDS-15 in determining depression were 92%, 91%, 76%, and 97%, respectively, when the cutoff value was taken as ≥5. The area under the receiver operating characteristics curve [95% confidence interval (CI)] was 0.97 (95% CI=0.947–0.996) for GDS-15 (p<0.001). The Cronbach alpha coefficient for the total scale was 0.920.CONCLUSION:GDS-15, just as GDS-30, is a beneficial scale in determining depression in older adults. This study provides an evidence for the validity and reliability of GDS-15 in Turkish elderly population and primary care centers.
This paper presents analyses of enrichments of uranium taken out from Canada Deuterium Uranium and pressurized water reactors spent fuels and fissile fuel breeding from thorium in two different helium cooled-accelerator driven system designs, DESIGN A and DESIGN B. In the beginning, the 235U percentages in the uranium fuels taken out from the reactors spent fuels are 0.17% and 0.91%, respectively. Both system cores are fuelled with two different minor actinides compositions extracted from PWR-MOX spent fuels. The DESIGN A has one transmutation zone (enrichment zone) surrounding the fuel core and containing thorium or spent uranium fuels, while DESIGN B has a second transmutation zone (fissile fuel breeding zone) surrounding the first transmutation zone and containing only thorium fuel. In brief, a total of ten cases formed by the combinations of accelerator driven system designs, minor actinides components, and spent uranium with thorium fuels are analysed, which are six in DESIGN A containing one transmutation zone and four in DESIGN B containing two transmutation zones. Lead-bismuth eutectic alloy, a liquid heavy metal, consisting of 45% lead and 55 % bismuth is used as target material in the investigated accelerator driven system. It is assumed that the target is bombarded with 1.2383?1017 protons per second and that the energy of each proton is 1000 MeV. This means a proton beam power of 20 MW. The 3-D and time-dependent neutronic analyses are conducted by using the MCNPX 2.7 and CINDER 90 nuclear code. Both accelerator driven system designs are operated until the values of keff rise to 0.985 to determine the longest operation times that are the effective burn times in all cases. Depending on the design, minor actinide composition, and fuel type (spent UO2 and ThO2), the results obtained at the end of cycle exhibit the effective burn times vary from 300 days to 2050 days, the fuel enrichments can reach up to 2.49-4.23% and the values of gain reach up to 10.8-25.1.
The study presents the analysis of the reusability of ThO2 and spent UO2 fuels enriched in two different ADS reactors fuelled with Minor Actinide. The spent UO2 fuels are taken out from pressurized water reactor and CANDU spent fuels. For this analysis, the CANDU-37 reactor having a total fission thermal power of 2156 MW is considered and 14 different cases of enriched fuels taken from the previous enrichment processes are analysed by burning in this reactor. The 3-D and time-dependent critical burn up calculations are carried out by using the MCNP 2.7 code. To determine the effective burn time of each case, these calculations are performed until the values of kinf decrease to about the criticality thresh old of 1.05 for all investigated cases. The percent ages of the 239Pu and 233U fissile isotopes appear to be below weapons-grade plutonium and uranium, respectively, in all enriched fuel cases. At the end of effective burn times, the burnup values can reach the values varying in the range of 26.770 and 33.540 GWd/MTU which are a mean of 3.5-4.5 times the burnup value of the CANDU-37 reactor fed with the NatUO2 fuel. The results of this study bring out that in terms of energy production, the CANDU-37 reactor fuelled with the ThO2 and spent UO2 fuels enriched in ADS designs demonstrates higher neutronic performance than the conventional CANDU-37 reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.