Background The sustainable management of agricultural resources requires the integration of cutting‐edge science with the observation and identification of crops. This assists experts to make correct decisions. The aim of this study is to assess the robustness of a commonly used deep learning tool, VGG16, in improving the categorization of wheat kernels. Two fusion methodologies were considered simultaneously. We performed experiments on visible light (RGB), short wave infrared (SWIR), and visible‐near infrared (VNIR) datasets, including 40 classes, with 200 samples in each class, giving 8000 samples in total. Results After making simulations with 6400 training and 1600 testing samples, we achieved excellent performance scores, with 98.19% and 100% accuracy rates, respectively. Conclusion The wheat identification system developed here serves as an effective identification framework and supports the view that deep learning tools can adequately discriminate between different types of wheat kernels. The proposed automated system would be useful for improving economic growth and in reducing the labor force, leading to greater efficiency and higher productivity in the wheat industry. © 2019 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.