In this article, we demonstrated various Hermite–Hadamard and Fejér type inequalities for modified h-convex functions. We showed several inequalities for the products of two modified h-convex functions. New identities related to inequalities in various forms are also established for different values of the h(φt) function. We believe that the approach presented in this paper will inspire more research in this area.
In this work, we established some new general integral inequalities of Hermite–Hadamard type for s-convex functions. To obtain these inequalities, we used the Hölder inequality, power-mean integral inequality, and some generalizations associated with these inequalities. Also we compared some inequalities (e.g., Theorem 6 and Theorem 8). Finally, we gave some applications for special means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.