Among the 11 members of the IL-1 family cytokines, the precursors of IL-1α, IL-1β, and IL-33 have relatively long N-terminal pro-sequences of approximately 100 amino acid residues prior to the N-terminus of the mature forms. Compared to the mature forms secreted from the cell, 80–90% of the primary translation product is in the intracellular compartment in the precursor form. However, the precursors are readily released from cells during infections but also with non-infectious conditions such a hypoxia and trauma. In this setting, the precursors act rapidly as “alarmins” in the absence of a processing mechanism to remove the pro-sequence and generate a mature form. In the case of IL-1α, the release of the precursor activates adjacent cells via receptor-mediated signaling. However, there are no data comparing the specific activity of the IL-1α precursor to the mature form. In the present study, we compared the precursor and mature forms of recombinant human IL-1α, IL-1β, and IL-33 proteins on the induction of cytokines from A549 cells as well as from human peripheral blood mononuclear cells (PBMC). Similar to the mature form, the IL-1α precursor was active in inducing IL-6 and TNFα, whereas the precursor forms of IL-1β and IL-33 were not active. On PBMC, precursor and mature IL-1α at 0.04 and 0.2 nM were equally active in inducing IL-6. Given the fact that during necrotic cell death, the IL-1α precursor is released intact and triggers IL-1 receptors on tissue macrophages, these data identify the precursor form of IL-1α as a key player in sterile inflammation.
Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.