The 5G is expected to revolutionize every sector of life by providing interconnectivity of everything everywhere at high speed. However, massively interconnected devices and fast data transmission will bring the challenge of privacy as well as energy deficiency. In today's fast-paced economy, almost every sector of the economy is dependent on energy resources. On the other hand, the energy sector is mainly dependent on fossil fuels and is constituting about 80% of energy globally. This massive extraction and combustion of fossil fuels lead to a lot of adverse impacts on health, environment, and economy. The newly emerging 5G technology has changed the existing phenomenon of life by connecting everything everywhere using IoT devices. 5G enabled IIoT devices has transformed everything from traditional to smart, e.g. smart city, smart healthcare, smart industry, smart manufacturing etc. However, massive I/O technologies for providing D2D connection has also created the issue of privacy that need to be addressed. Privacy is the fundamental right of every individual. 5G industries and organizations need to preserve it for their stability and competency. Therefore, privacy at all three levels (data, identity and location) need to be maintained. Further, energy optimization is a big challenge that needs to be addressed for leveraging the potential benefits of 5G and 5G aided IIoT. Billions of IIoT devices that are expected to communicate using the 5G network will consume a considerable amount of energy while energy resources are limited. Therefore, energy optimization is a future challenge faced by 5G industries that need to be addressed. To fill these gaps, we have provided a comprehensive framework that will help energy researchers and practitioners in better understanding of 5G aided industry 4.0 infrastructure and energy resource optimization by improving privacy. The proposed framework is evaluated using case studies and mathematical modelling.
In Digital Video Broadcasting-Handheld (DVB-H) devices for cyber-physical social systems, the Discrete Fractional Fourier Transform-Orthogonal Chirp Division Multiplexing (DFrFT-OCDM) has been suggested to enhance the performance over Orthogonal Frequency Division Multiplexing (OFDM) systems under time and frequency-selective fading channels. In this case, the need for equalizers like the Minimum Mean Square Error (MMSE) and Zero-Forcing (ZF) arises, though it is excessively complex due to the need for a matrix inversion, especially for DVB-H extensive symbol lengths. In this work, a low complexity equalizer, Least-Squares Minimal Residual (LSMR) algorithm, is used to solve the matrix inversion iteratively. The paper proposes the LSMR algorithm for linear and nonlinear equalizers with the simulation results, which indicate that the proposed equalizer has significant performance and reduced complexity over the classical MMSE equalizer and other low complexity equalizers, in time and frequencyselective fading channels. INDEX TERMS Least-squares minimal residual (LSMR), digital video broadcasting-handheld (DVB-H), orthogonal frequency division multiplexing (OFDM), zero-forcing (ZF) and cyber-physical social systems. HANI ATTAR received the Ph.D. degree from the Department of Electrical and Electronic Engineering, University of Strathclyde, U.K., in 2011. Since 2011, he has been working as a Researcher of electrical engineering and energy systems. He is currently a University Lecturer with Zarqa University, Jordan. His research interests include network coding, wireless sensor networks, and wireless communications.
Load forecasting is a technique used for the prediction of electrical load demands in battery management. In general, the aggregated level used for Short-Term Electrical Load Forecasting (STLF) consists of either numerical or non-numerical information collected from multiple sources, which helps in obtaining accurate data and efficient forecasting. However, the aggregated level cannot precisely forecast the validation and testing phases of numerical data, including the real-time measurements of irradiance level (W/m 2 ) and photovoltaic output power (W). Forecasting is also a challenge due to the fluctuations caused by the random usage of appliances in the existing weekly, diurnal, and annual cycle load data. In this study, we have overcome this challenge by using Artificial Neural Network (ANN) methods such as Bayesian Regularization (BR) and Levenberg-Marquardt (LM) algorithms. The STLF achieved by ANN-based methods can improve the forecast accuracy. The overall performance of the BR and LM algorithms were analyzed during the development phases of the ANN. The input layer, hidden layer and output layer used to train and test the ANN together predict the 24-hour electricity demand. The results show that utilizing the LM and BR algorithms delivers a highly efficient architecture for renewable power estimation demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.