Organic aerosols (OAs) have important influences on the climatic implications and health effects of atmospheric aerosols. Among the complex OA constituents, brown carbon (BrC) accounts for a substantial mass fraction and is of special interest because of its light‐absorbing properties. In this study, the chemical composition of atmospheric OAs over the middle‐lower Yangtze River (MLYR) channel, as well as the BrC, was investigated during a ship cruise campaign in winter 2015. In total, more than 1,000 molecular formulas were determined using a combination of ultra‐high performance liquid chromatography (UHPLC), a diode array detector (DAD), and Orbitrap high‐resolution mass spectrometry (HRMS). Large numbers and enhanced signal abundances for known tracers as well as monocyclic and polycyclic aromatics indicate that biomass burning and fossil combustion are important sources of OAs over the MLYR channel. In addition, 13 chromophores with strong light absorption, mostly representing established biomass burning tracers, were unambiguously determined by UHPLC/DAD/HRMS and contributed to 35–37% of the total light absorption of OAs at 290 nm and 58–70% at 350 nm. Sixty‐three previously identified biomass burning chromophores were also positively identified in the mass spectrometric analysis here but embedded in the humped signal during the spectroscopic analysis. These BrC chromophores exhibit high degrees of unsaturation, suggesting that these compounds are aromatic, nitro‐aromatic, and polycyclic aromatic type of species. Our results highlight the significant influence of biomass burning and fossil combustion on atmospheric OAs over the MLYR channel in the winter, strongly enhancing light‐absorbing properties and decreasing air quality.
China holds the largest amount of reservoirs in the world, while more than 80% of them were constructed 50–70 years ago and are approaching a critical stage of their designed lifetime. Before deciding the future of a reservoir, it is essential to find out whether it could still satisfy its original purpose in the context of hydroclimate change under global warming. Here, we present a case study of the Meishan reservoir in east-central China, which was primarily built for irrigation and flood control in the 1950s. We evaluate the impacts of rainfall change on the hedging and releasing rules over the historical period (1969–2008) by instrumental data and future period (2061–2100) based on simulations in a regional rivalry-mitigated scenario from the Coupled Model Intercomparison Project Phase 6. The main conclusions are as follows: (1) the annual total rainfall has a remarkable increasing trend from 2015 to 2100 and the annual precipitation variability exceeds the envelope range during the past 50-year period. The increased precipitation amount mainly occurs in spring (March to May). (2) The optimal regulation cycle is from September to August and from July to June for both historical and future periods. The limiting level during the nonflooded season is lower than the operating water level for more than five months in the historical period, which limits the ability of reservoir regulation and utilization of water resources. However, the water supply is no longer affected by flood control in 2061–2100 because of the redistribution of annual precipitation. (3) The projected irrigation and residential water demands of the Meishan reservoir are stable; thus, the improvement of the total economic benefit will mainly depend on power generation. This case provides a practical guide for many reservoirs serving water supply for small cities in eastern China, where the size of the population and cultivated land area is stagnant and the climate is getting wetter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.