A major goal of regenerative medicine is to instruct formation of multipotent, tissue-specific stem cells from induced pluripotent stem cells (iPSCs) for cell replacement therapies. Generation of hematopoietic stem cells (HSCs) from iPSCs or embryonic stem cells (ESCs) is not currently possible, however, necessitating a better understanding of how HSCs normally arise during embryonic development. We previously showed that hematopoiesis occurs through four distinct waves during zebrafish development, with HSCs arising in the final wave in close association with the dorsal aorta. Recent reports have suggested that murine HSCs derive from hemogenic endothelial cells (ECs) lining the aortic floor1,2. Additional in vitro studies have similarly suggested that the hematopoietic progeny of ESCs arise through intermediates with endothelial potential3,4. In this report, we have utilized the unique strengths of the zebrafish embryo to image directly the birth of HSCs from the ventral wall of the dorsal aorta. Utilizing combinations of fluorescent reporter transgenes, confocal timelapse microscopy and flow cytometry, we have identified and isolated the stepwise intermediates as aortic hemogenic endothelium transitions to nascent HSCs. Finally, using a permanent lineage tracing strategy, we demonstrate that the HSCs generated from hemogenic endothelium are the lineal founders of the adult hematopoietic system.
The core promoter is the ultimate target of the vast network of regulatory factors that contribute to the initiation of transcription by RNA polymerase II. Here we describe the MTE (motif ten element), a new core promoter element that appears to be conserved from Drosophila to humans. The MTE promotes transcription by RNA polymerase II when it is located precisely at positions +18 to +27 relative to A +1 in the initiator (Inr) element. MTE sequences from +18 to +22 relative to A +1 are important for basal transcription, and a region from +18 to +27 is sufficient to confer MTE activity to heterologous core promoters. The MTE requires the Inr, but functions independently of the TATA-box and DPE. Notably, the loss of transcriptional activity upon mutation of a TATA-box or DPE can be compensated by the addition of an MTE. In addition, the MTE exhibits strong synergism with the TATA-box as well as the DPE. These findings indicate that the MTE is a novel downstream core promoter element that is important for transcription by RNA polymerase II.[Keywords: RNA polymerase II; core promoter; DPE; Inr; TATA-box] Transcription is a critical control point in the regulation of gene expression. In eukaryotes, the transcription of protein-coding genes by RNA polymerase II is mediated by a complex network of factors that include sequencespecific DNA-binding proteins, transcriptional coregulators, chromatin-remodeling factors, enzymes that covalently modify histones and other proteins, and the basal transcriptional machinery (for reviews, see
Haematopoietic stem cells (HSCs) arise in the developing aorta during embryogenesis. The number of HSC clones born has been estimated through transplantation, but experimental approaches to assess the absolute number of forming HSCs in a native setting have remained challenging. Here, we applied single-cell and clonal analysis of HSCs in zebrafish to quantify developing HSCs. Targeting creERT2 in developing cd41:eGFP+ HSCs enabled long-term assessment of their blood contribution. We also applied the Brainbow-based multicolour Zebrabow system with drl:creERT2 that is active in early haematopoiesis to induce heritable colour barcoding unique to each HSC and its progeny. Our findings reveal that approximately 21 HSC clones exist prior to HSC emergence and 30 clones are present during peak production from aortic endothelium. Our methods further reveal that stress haematopoiesis, including sublethal irradiation and transplantation, reduces clonal diversity. Our findings provide quantitative insights into the early clonal events that regulate haematopoietic development.
The cyclic AMP (cAMP)-responsive factor CREB induces target gene expression via constitutive (Q2) and inducible (KID, for kinase-inducible domain) activation domains that function synergistically in response to cellular signals. KID stimulates transcription via a phospho (Ser133)-dependent interaction with the coactivator paralogs CREB binding protein and p300, whereas Q2 recruits the TFIID complex via a direct association with hTAF II 130. Here we investigate the mechanism underlying cooperativity between the Q2 domain and KID in CREB by in vitro transcription assay with naked DNA and chromatin templates containing the cAMP-responsive somatostatin promoter. The Q2 domain was highly active on a naked DNA template, and Ser133 phosphorylation had no additional effect on transcriptional initiation in crude extracts. Q2 activity was repressed on a chromatin template, however, and this repression was relieved by the phospho (Ser133) KID-dependent recruitment of p300 histone acetyltransferase activity to the promoter. In chromatin immunoprecipitation assays of NIH 3T3 cells, cAMP-dependent recruitment of p300 to the somatostatin promoter stimulated acetylation of histone H4. Correspondingly, overexpression of hTAFII130 potentiated CREB activity in cells exposed to cAMP, but had no effect on reporter gene expression in unstimulated cells. We propose that cooperativity between the KID and Q2 domains proceeds via a chromatin-dependent mechanism in which recruitment of p300 facilitates subsequent interaction of CREB with TFIID.
Locus control regions (LCRs) refer to cis-acting elements composed of several DNase I hypersensitive sites, which synergize to protect transgenes from integration-site dependent effects in a tissue-specific manner. LCRs have been identified in many immunologically important gene loci, including one between the TCRδ/TCRα gene segments and the ubiquitously expressed Dad1 gene. Expression of a transgene under the control of all the LCR elements is T cell specific. However, a subfragment of this LCR is functional in a wide variety of tissues. How a ubiquitously active element can participate in tissue-restricted LCR activity is not clear. In this study, we localize the ubiquitously active sequences of the TCR-α LCR to an 800-bp region containing a prominent DNase hypersensitive site. In isolation, the activity in this region suppresses position effect transgene silencing in many tissues. A combination of in vivo footprint examination of this element in widely active transgene and EMSAs revealed tissue-unrestricted factor occupancy patterns and binding of several ubiquitously expressed transcription factors. In contrast, tissue-specific, differential protein occupancies at this element were observed in the endogenous locus or full-length LCR transgene. We identified tissue-restricted AML-1 and Elf-1 as proteins that potentially act via this element. These data demonstrate that a widely active LCR module can synergize with other LCR components to produce tissue-specific LCR activity through differential protein occupancy and function and provide evidence to support a role for this LCR module in the regulation of both TCR and Dad1 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.