Background Ovarian cancer (OC) is a fatal gynaecological malignancy. The study aimed to conduct a comprehensive study to determine the role of ELF3 in OC through bioinformatic analysis. Methods Kruskal–Wallis test, Wilcoxon sign-rank test, and logistic regression were used to evaluate the relationship between clinical characteristics and ELF3 expression. Kaplan–Meier method and Cox regression analysis were used to evaluate the prognostic factors. Gene set enrichment analysis (GSEA) and immuno-infiltration analysis were used to evaluate the significant involvement of ELF3 in function. Results High ELF3 expression in OC was associated with age (P< 0.001). High ELF3 expression predicted a poorer overall survival (OS) (HR: 1.37; 95% CI: 1.05–1.78; P=0.019) and disease specific survival (DSS) (HR: 1.43; 95% CI: 1.08–1.89; P=0.013). And ELF3 expression (HR: 1.779; 95% CI: 1.281–2.472; P<0.001) was independently correlated with OS in OC patients. GSEA demonstrated that pathways including GPCR-ligand binding, neuronal system, signaling by WNT, translation, neuroactive ligand-receptor interaction, and TCF dependent signaling in response to WNT were differentially enriched in ELF3 low expression phenotype. Immune infiltration analysis showed that ELF3 expression was correlated with immune infiltrates. Conclusion ELF3 expression in OC patients was significantly associated with poor survival and immune infiltration and a promising prognostic biomarker in OC.
Background:The study aims to analyze the expression levels of kinesin family member 1A (KIF1A) in ovarian cancer (OC) and explore its clinical significance in the development of OC and its potential regulatory network. Methods: The Cancer Genome Atlas (TCGA) OC data was used to examine the expression differences between OC and normal tissue and explore the correlation with tumor stage. The relationship between KIF1A expression and prognosis was analyzed using Oncomine and Kaplan-Meier plotter tools. The co-expression network of KIF1A in TCGA OC was analyzed based on the application of cBioPortal, GO cluster, and KEGG analyses were performed based on the co-expression network. Immune-infiltration analysis were used to analyze the significant involvement of KIF1A in function. Results: KIF1A was highly elevated in OC tissues and KIF1A expression was significantly correlated with the FIGO stage (P=0.015) and age (P=0.020). High KIF1A expression of OC predicted the poor prognosis including overall survival (OS) (HR: 1.27; 95% CI: 1.11-1.45; P=0.00046) and post-progression survival (PFS) (HR: 1.18; 95% CI: 1.03-1.35; P=0.015). GO and KEGG analysis showed KIF1A had a potential role in the biological process of ATPdependent chromatin remodeling, transcription, DNA-templated cytolysis, positive regulation of T cell proliferation, positive regulation of transcription, DNA-templated via cell adhesion molecules (CAMs), primary immunodeficiency, oxidative phosphorylation, NFkappa B signaling pathway, pathways in cancer and Wnt signaling pathway, and immune infiltrating cells. Conclusion: KIF1A was highly expressed and correlated with poor survival and immune infiltration in OC, and it may be a prognostic biomarker in OC.
Background. The present study is aimed at providing systematic insight into the composition and expression of transfer RNA (tRNA) derivative transcription in high-grade serous ovarian cancer (HGSOC). Methods. tRNA derivative expression profiles in three pairs of HGSOC and adjacent normal ovarian tissues were conducted by tRNA-derived small RNA fragment (tRF) and tRNA half (tiRNA) sequencing. The differentially expressed tRFs and tiRNAs between HGSOC and paired adjacent normal samples were screened. The targeted genes of differentially expressed tRFs and tiRNAs were screened. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) of target genes of tRFs and tiRNAs were analyzed. Results. There are a total of 20 significantly upregulated and 15 significantly downregulated tRFs and tiRNAs between the cancer group and the paracarcinoma group. The upregulated tRFs and tiRNAs are mucin-type O-glycan biosynthesis, glycosphingolipid biosynthesis, the glucagon signaling pathway, the AMPK signaling pathway, maturity-onset diabetes of the young, glycosphingolipid biosynthesis, the insulin signaling pathway, insulin resistance, leukocyte transendothelial migration, starch, and sucrose metabolism. The downregulated tRFs and tiRNAs are other glycan degradation, vitamin digestion and absorption, fatty acid elongation, and biosynthesis of unsaturated fatty acids. Conclusions. There are significantly expressed tRFs and tiRNAs in HGSOC tissues, and these may provide potential diagnostic biomarkers and therapeutic targets for HGSOC.
Background. Endocrine disruption is an important factor in the development of endometrial cancer. Expression of miR-149-3p is observed in some cancer types, while its role in uterine corpus endometrial carcinoma (UCEC) is unclear. Methods. The clinical and genomic data and prognostic information on UCEC were obtained for patients from the TCGA database. The Kruskal–Wallis test, Wilcoxon signed-rank test, and logistic regression were used to analyze the relationship between clinical characteristics and miR-149-3p expression. Kaplan–Meier survival curve analysis was used to study the influence of miR-149-3p expression and miR-149-3p target genes on the prognosis of UCEC patients. The TargetScan, PicTar, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to determine the involvement of miR-149-3p target genes in function. Immune infiltration analysis was used to analyze the functional involvement of miR-149-3p. QRT-PCR was used to validate the expression of miR-149-3p in UCEC cell lines. Results. High expression of miR-149-3p in UCEC was significantly associated with age ( P < 0.001 ), histological type ( P < 0.001 ), histological grade ( P < 0.001 ), tumor invasion ( P = 0.014 ), and radiation therapy ( P = 0.011 ). High miR-149-3p expression predicted poorer overall survival (OS) (HR: 2.56; 95% CI: 1.64–4.00; P < 0.001 ), progression-free interval (PFI) (HR: 1.85; 95% CI: 1.29–2.65; P = 0.001 ), and disease-specific survival (DSS) (HR: 2.33; 95% CI: 1.37–3.99; P = 0.002 ). Low expressions of miR-149-3p target genes, including ADCYAP1R1, CGNL1, CHST3, CYGB, DNAH9, ESR1, HHIP, HIC1, HOXD11, IGF1, INMT, LSP1, MTMR10, NFIC, PLCE1, RARA, SNTN, SPRYD3, and ZBTB7A, were associated with poor OS in UCEC. MiR-149-3p may be involved in the occurrence and development of UCEC via pathways including PI3K-Akt signaling pathway, Ras signaling pathway, AGE-RAGE signaling pathway in diabetic complications, focal adhesion, and MAPK signaling pathway. miR-149-3p may inhibit the function of CD8 T cells, cytotoxic cells, eosinophils, iDC, mast cells, neutrophils, NK CD56bright cells, NK CD56dim cells, pDC, T cells, T helper cells, TFH, Th17 cells, and Treg. miR-149-3p was significantly upregulated in UCEC cell lines compared with endometriotic stromal cells. Conclusion. High expression of miR-149-3p was significantly associated with poor survival in UCEC patients. It may be a promising biomarker of prognosis and response to immunotherapy for UCEC patients.
Background Aberrant expression of microRNAs (miRNAs) contributes to the development of high grade serous ovarian cancer (HGSOC). However, the molecular mechanism by which miRNA-585-3p mediates high-grade serous ovarian carcinogenesis is unclear. This study aims to investigate the specific mechanism of action of miR-585-3p in HGSOC. Methods Expression of miR-585-3p in HGSOC tissues and cell lines was detected by qRT-PCR. Cell viability and migration were detected using MTT and transwell system. The expression of target genes and target proteins of miR-585-3p was detected by dual luciferase reporter assay and western blot. Results The expression of miR-585-3p was significantly lower in HGSOC tissues and cells than in normal ovarian tissues and cell lines. In HGSOC tissues, CAPN9 expression was inversely correlated with miR-585-3p expression. MiR-585-3p inhibited the proliferation and migration of HGSOC cells. MiR-585-3p bound to the 3'-untranslated region (UTR) of CAPN9 and inhibits CAPN9 expression. Overexpression of CAPN9 reduced the inhibitory effect of miR-585-3p in HGSOC cells. Conclusions miR-585-3p is significantly down-regulated in HGSOC tissues and cell lines. MiR-585-3p inhibits the proliferation and migration of HGSOC cells by targeting CAPN9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.