The vertebrate inner ear arises from a pool of progenitors with the potential to give rise to all the sense organs and cranial ganglia of the head1-6. Here we explore the molecular mechanisms that control ear specification from these precursors. Using a multi-omics approach combined with loss-of-function experiments we identify a core transcriptional circuit that imparts ear identity, along with non-coding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into cranial ectoderm not only converts non-ear cells into ear progenitors, but also activates the cellular programmes for ear morphogenesis and neurogenesis. Thus, Sox8 emerges as a master regulator of ear identity and may be a key factor for sense organ cell reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.