Search heuristics for the in silico discovery of drug candidates have recently received increased attention. Most of these heuristics such as Simulated Annealing and Evolutionary Algorithms gradually improve molecules by exploiting that the similarity in the molecular structure often relates to the similarity in the properties of molecules such as activity against a target. However, it often remains unproven whether such continuity assumptions actually hold. Generally speaking, there is a need to better understand and assess the properties of molecular search landscapes in order to design/choose appropriate optimization methods to search these spaces.The theory of combinatorial landscape analysis aims to provide such analysis tools. However, many of the methods proposed in this field require the complete knowledge of the landscape and thus are inappropriate for analyzing the huge search spaces of chemical structures. If the size of the search space forbids enumeration, statistical landscape analysis methods are the only available tool.Following the approach of Vassilev et al.[1] we propose to estimate landscape properties from random walks using the variation operator of the search heuristic. Once a search heuristic is built, these random walks can be generated with little extra effort. The precision of the obtained results scales with the number and length of the random walks available. Given the data from random walks the following analysis methods can be used: (1) Correlation Length Analysis which reveals the validity of the continuity assumption; (2) Information Complexity which reveals the structural diversity of the search landscape; (3) Multimodality measures which estimate the frequency of local optima for different neighbourhood radii, and finally (4) Neutrality measures which account for the size distribution of plateaus in the landscape. Each measure indicates difficulties for optimization routines encountered when optimizing the objective function.We apply random-walk based landscape analysis for two search spaces in the context of de-novo drug design: Firstly, we study the properties of the search space induced by the mutation operators of the Molecule Evoluator™ [2] with an activity model as an objective function. Secondly, we study the properties of a peptide design problem using the software MOE. Here a ligand that binds tightly to a 14-3-3 isoform is searched for.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.