The next promising key issue of the automobile development is a self-driving technique. One of the challenges for intelligent selfdriving includes a lane-detecting and lane-keeping capability for advanced driver assistance systems. This paper introduces an efficient and lane detection method designed based on top view image transformation that converts an image from a front view to a top view space. After the top view image transformation, a Hough transformation technique is integrated by using a parabolic model of a curved lane in order to estimate a parametric model of the lane in the top view space. The parameters of the parabolic model are estimated by utilizing a least-square approach. The experimental results show that the newly proposed lane detection method with the top view transformation is very effective in estimating a sharp and curved lane leading to a precise self-driving capability.
A new reactive motion planning method for an autonomous vehicle in dynamic environments is proposed. The new dynamic motion planning method combines a virtual plane based reactive motion planning technique with a sensor fusion based obstacle detection approach, which results in improving robustness and autonomy of vehicle navigation within unpredictable dynamic environments. The key feature of the new reactive motion planning method is based on a local observer in the virtual plane which allows the effective transformation of complex dynamic planning problems into simple stationary in the virtual plane. In addition, a sensor fusion based obstacle detection technique provides the pose estimation of moving obstacles by using a Kinect sensor and a sonar sensor, which helps to improve the accuracy and robustness of the reactive motion planning approach in uncertain dynamic environments. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles even in hostile environments where conventional method failed.
The purpose of the self-driving car is to minimize the number casualties of traffic accidents. One of the effects of traffic accidents is an improper speed of a car, especially at the road turn. If we can make the anticipation of the road turn, it is possible to avoid traffic accidents. This paper presents a cutting edge curve lane detection algorithm based on the Kalman filter for the self-driving car. It uses parabola equation and circle equation models inside the Kalman filter to estimate parameters of a using curve lane. The proposed algorithm was tested with a self-driving vehicle. Experiment results show that the curve lane detection algorithm has a high success rate. The paper also presents simulation results of the autonomous vehicle with the feature to control steering and speed using the results of the full curve lane detection algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.