Highly sophisticated control based on a braincomputer interface (BCI) requires decoding kinematic information from brain signals. The forearm is a region of the upper limb that is often used in everyday life, but intuitive movements within the same limb have rarely been investigated in previous BCI studies. In this study, we focused on various forearm movement decoding from electroencephalography (EEG) signals using a small number of samples. Ten healthy participants took part in an experiment and performed motor execution (ME) and motor imagery (MI) of the intuitive movement tasks (Dataset I). We propose a convolutional neural network using a channel-wise variational autoencoder (CVNet) based on inter-task transfer learning. We approached that training the reconstructed ME-EEG signals together will also achieve more sufficient classification performance with only a small amount of MI-EEG signals.The proposed CVNet was validated on our own Dataset I and a public dataset, BNCI Horizon 2020 (Dataset II). The classification accuracies of various movements are confirmed to be 0.83 (±0.04) and 0.69 (±0.04) for Dataset I and II, respectively. The results show that the proposed method exhibits performance increases of approximately 0.09∼0.27 and 0.08∼0.24 compared with the conventional models for Dataset I and II, respectively. The outcomes suggest that the training model for decoding imagined movements can be performed using data from ME and a small number of data samples from MI. Hence, it is presented the feasibility of BCI learning strategies that can sufficiently learn deep learning with a few amount of calibration dataset and time only, with stable performance.
A brain-computer interface (BCI) provides a direct communication pathway between user and external devices. Electroencephalogram (EEG) motor imagery (MI) paradigm is widely used in non-invasive BCI to obtain encoded signals contained user intention of movement execution. However, EEG has intricate and non-stationary properties resulting in insufficient decoding performance. By imagining numerous movements of a single-arm, decoding performance can be improved without artificial command matching. In this study, we collected intuitive EEG data contained the nine different types of movements of a single-arm from 9 subjects. We propose an end-toend role assigned convolutional neural network (ERA-CNN) which considers discriminative features of each upper limb region by adopting the principle of a hierarchical CNN architecture. The proposed model outperforms previous methods on 3-class, 5-class and two different types of 7-class classification tasks. Hence, we demonstrate the possibility of decoding user intention by using only EEG signals with robust performance using an ERA-CNN.Index Terms-Brain-computer interface (BCI), Electroencephalogram (EEG), Motor imagery, Convolutional Neural Network (CNN)
Electroencephalogram (EEG)-based brain-machine interface (BMI) has been utilized to help patients regain motor function and has recently been validated for its use in healthy people because of its ability to directly decipher human intentions. In particular, neurolinguistic research using EEGs has been investigated as an intuitive and naturalistic communication tool between humans and machines. In this study, the human mind directly decoded the neural languages based on speech imagery using the proposed deep neurolinguistic learning. Through realtime experiments, we evaluated whether BMI-based cooperative tasks between multiple users could be accomplished using a variety of neural languages. We successfully demonstrated a BMI system that allows a variety of scenarios, such as essential activity, collaborative play, and emotional interaction. This outcome presents a novel BMI frontier that can interact at the level of human-like intelligence in real time and extends the boundaries of the communication paradigm.
Brain-computer interface (BCI) decodes brain signals to understand user intention and status. Because of its simple and safe data acquisition process, electroencephalogram (EEG) is commonly used in non-invasive BCI. One of EEG paradigms, motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin. However, the EEG signals are an oscillatory and non-stationary signal that makes it difficult to collect and classify MI accurately. In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) which is composed of two convolution blocks to achieve high classification accuracy. We collected EEG signals to create MI dataset contained the movement imagination of a single-arm. The proposed model outperforms conventional approaches in 4-class MI tasks classification. Hence, we demonstrate that the decoding of user intention is possible by using only EEG signals with robust performance using BFR-CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.