-Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.
This paper deals with the weight reduction design of In-Wheel type motor for high power density.Accordingly, characteristic and weight of the motor caused by modifying reduction gear ratio are examined.Weight of motor is minimized by modulating the ratio of stack length and external diameter of stator. Then, In-Wheel motor geometry based on the prototype is optimized to get the determined parameters using response surface methodology (RSM) and Finite Element Method (FEM). Optimal design of core usage in rotor is conducted for minimizing weight of motor which has identical characteristic to the prototype.Characteristic analysis is conducted by using equivalent circuit analysis of PM type motor. Through the presented weight of In-Wheel type motor, total weight is reduced to 25%, and power density is improved to 57% from the prototype motor.
This paper presents size reduction of primary iron core for tubular linear induction motor by improved winding configuration. Using one-ampere conductor method, magnetic field analysis of tubular linear induction motor for size reduction is conducted. Size reduction and improvement of air gap flux distribution is achieved by improved winding configuration, and analysis results are verified by finite element analysis (FEA) and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.