Crop monitoring is highly important in terms of the efficient and stable performance of tasks such as planting, spraying, and harvesting, and for this reason, several studies are being conducted to develop and improve crop monitoring robots. In addition, the applications of deep learning algorithms are increasing in the development of agricultural robots since deep learning algorithms that use convolutional neural networks have been proven to show outstanding performance in image classification, segmentation, and object detection. However, most of these applications are focused on the development of harvesting robots, and thus, there are only a few studies that improve and develop monitoring robots through the use of deep learning. For this reason, we aimed to develop a real-time robot monitoring system for the generative growth of tomatoes. The presented method detects tomato fruits grown in hydroponic greenhouses using the Faster R-CNN (region-based convolutional neural network). In addition, we sought to select a color model that was robust to external light, and we used hue values to develop an image-based maturity standard for tomato fruits; furthermore, the developed maturity standard was verified through comparison with expert classification. Finally, the number of tomatoes was counted using a centroid-based tracking algorithm. We trained the detection model using an open dataset and tested the whole system in real-time in a hydroponic greenhouse. A total of 53 tomato fruits were used to verify the developed system, and the developed system achieved 88.6% detection accuracy when completely obscured fruits not captured by the camera were included. When excluding obscured fruits, the system’s accuracy was 90.2%. For the maturity classification, we conducted qualitative evaluations with the assistance of experts.
The visual perception of freshness is an important factor considered by consumers in the purchase of fruits and vegetables. However, panel testing when evaluating food products is time consuming and expensive. Herein, the ability of an image processing-based, nondestructive technique to classify spinach freshness was evaluated. Images of spinach leaves were taken using a smartphone camera after different storage periods. Twelve sensory panels ranked spinach freshness into one of four levels using these images. The rounded value of the average from all twelve panel evaluations was set as the true label. The spinach image was removed from the background, and then converted into a gray scale and CIE-Lab color space (L*a*b*) and Hue, Saturation and Value (HSV). The mean value, minimum value, and standard deviation of each component of color in spinach leaf were extracted as color features. Local features were extracted using the bag-of-words of key points from Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features). The feature combinations selected from the spinach images were used to train machine learning models to recognize freshness levels. Correlation analysis between the extracted features and the sensory evaluation score showed a positive correlation (0.5 < r < 0.6) for four color features, and a negative correlation (‒0.6 < r < ‒0.5) for six clusters in the local features. The support vector machine classifier and artificial neural network algorithm successfully classified spinach samples with overall accuracy 70% in four-class, 77% in three-class and 84% in two-class, which was similar to that of the individual panel evaluations. Our findings indicate that a model using support vector machine classifiers and artificial neural networks has the potential to replace freshness evaluations currently performed by non-trained panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.