A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS. 초 록순항 유도탄은 비행기처럼 날개와 제트엔진을 사용하여 상당 거리를 순항한 후 최종 목표에 도 달하는 유도탄이다. 적의 레이더에 쉽게 포착되지 않을뿐더러 아음속 장거리 순항이 가능해야 하 므로, RCS 저감과 향상된 공력성능을 고려한 통합 설계가 필수적이다. 본 연구에서는 Taurus 유도 탄과 유사한 순항 유도탄 모델을 설계한 후, Physical Optics (PO; 물리적 광학) 기법과 Navier-Stokes CFD 코드를 사용하여 비행체의 RCS와 공력특성을 분석하였다. 이를 바탕으로 공력성능 향 상과 RCS 저감 기술이 적용된 순항 유도탄의 최적 형상을 도출하였다.
The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed. 초 록
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.