Dental crowns are used to restore decayed or chipped teeth, where their surfaces play a key role in this restoration process, as they affect the fitting and stable bonding of the prostheses. The surface texture of crowns can interfere with this restoration process, therefore the measurement of their inner surface roughness is very important but difficult to achieve using conventional imaging methods. In this study, the inner surfaces of dental crowns were three-dimensionally (3D) visualized using swept-source optical coherence tomography (SS-OCT) system. Nine crowns were fabricated with a commercial 3D printer using three different hatching methods (one-way, cross, and 30° angle counterclockwise) and three different build direction angles (0°, 45°, and 90°). In addition, an image processing algorithm was developed, which uses morphological filtering, boundary detection, and a high-pass frequency filtering technique, to quantitatively evaluate the inner surface roughness of the dental crowns cross-sections with the depth-of-focus set to match two different regions. The averaged smoothness of fabricated crown was effectively produced using the cross-hatching and the build direction angle of 90° by the respective process. Thus, the results confirm the potential use of this methodology to determine the best parameters to use in 3D fabrication for improving the effectiveness and stability of dental prostheses. INDEX TERMS 3D printing, dental crown, image processing, optical coherence tomography, surface roughness.
An elevated relative moisture in the external ear canal and middle ear cavity may predispose to chronic otorrhea and related infections along with abnormal tympanic membrane (TM) vibration patterns. Therefore, phase shift-resolved optical Doppler vibrography (ODV) was used for vibration assessments of moisture influenced cadaveric TM. ODV was applied to generate time resolved cross-sectional and volumetric vibrographs of a cadaveric TM, driven acoustically at several frequencies. In order to analyze the effect of moisture on TM, homogenous moisture conditions were provided by soaking the cadaveric TM specimens in 1× phosphate buffer saline with a pH of 7.4. The TM specimen was exposed to a rapidly switchable frequency generator during the ODV image acquisition. The experiment was conducted for 3 hours and the cadaveric TM was exposed to each frequency with an interval of 30 minutes. Acquired phase shift-resolved ODV assessments revealed a depth dependent vibration tendency between the applied frequencies, along with a decline in the moisture level of the cadaveric TM specimen. Thus, the ODV method can aid our understanding of sound conduction in the middle ear, thus supporting the diagnosis of TM diseases. K E Y W O R D Smoisture, optical Doppler vibrography, phase shift, tympanic membrane Byeonggyu Jeon and Jaeyul Lee contributed equally to this work.
The Study of mosquitoes and their behavioral analysis are of crucial importance to control the alarmingly increasing mosquito-borne diseases. Conventional imaging techniques use either dissection, exogenous contrast agents. Non-destructive imaging techniques, like x-ray and microcomputed tomography uses ionizing radiations. Hence, a non-destructive and real-time imaging technique which can obtain high resolution images to study the anatomical features of mosquito specimen can greatly aid researchers for mosquito studies. In this study, the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes has been demonstrated. The anatomical features of An. sinensis head, thorax, and abdomen regions along with internal morphological structures like foregut, midgut, and hindgut were studied using OCT imaging. Two-dimensional (2D) and three-dimensional (3D) OCT images along with histology images were helpful for the anatomical analysis of the mosquito specimens. From the concurred results and by exhibiting this as an initial study, the applicability of OCT in future entomological researches related to mosquitoes and changes in its anatomical structure is demonstrated.
The Study of mosquitoes and their behavioral analysis are of crucial importance to control the alarmingly increasing mosquito-borne diseases. Conventional imaging techniques use either dissection, exogenous contrast agents. Non-destructive imaging techniques, like x-ray and microcomputed tomography uses ionizing radiations. Hence, a non-destructive and real-time imaging technique which can obtain high resolution images to study the anatomical features of mosquito specimen can greatly aid researchers for mosquito studies. In this study, the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes has been demonstrated. The anatomical features of An. sinensis head, thorax, and abdomen regions along with internal morphological structures like foregut, midgut, and hindgut were studied using OCT imaging. Two-dimensional (2D) and three-dimensional (3D) OCT images along with histology images were helpful for the anatomical analysis of the mosquito specimens. From the concurred results and by exhibiting this as an initial study, the applicability of OCT in future entomological researches related to mosquitoes and changes in its anatomical structure is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.