White blood cells (WBCs) are essential components of the immune system in the human body. Various invasive and noninvasive methods to monitor the condition of the WBCs have been developed. Among them, a noninvasive method exploits an optical characteristic of WBCs in a nailfold capillary image, as they appear as visual gaps. This method is inexpensive and could possibly be implemented on a portable device. However, recent studies on this method use a manual or semimanual image segmentation, which depends on recognizable features and the intervention of experts, hindering its scalability and applicability. We address and solve this problem with proposing an automated method for detecting and counting WBCs that appear as visual gaps on nailfold capillary images. The proposed method consists of an automatic capillary segmentation method using deep learning, video stabilization, and WBC event detection algorithms. Performances of the three segmentation algorithms (manual, conventional, and deep learning) with/without video stabilization were benchmarks. Experimental results demonstrate that the proposed method improves the performance of the WBC event counting and outperforms conventional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.