This paper presents a fatigue crack detection technique based on visualization of nonlinear ultrasonic wave modulation produced by a fatigue crack. When distinctive low frequency (LF) and high frequency (HF) inputs are generated and applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. In this study, the two input signals are created by two air-coupled transducers (ACT), and the corresponding ultrasonic responses are scanned over a target specimen using a 3D laser Doppler vibrometer (LDV). The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), and continuous wavelet transform (CWT) filtering. Then, the extracted spectral sideband components are visualized near the fatigue crack. The effectiveness of the proposed non-contact scanning technique is tested using an aluminum plate with a real fatigue crack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.