This article presents thermal characteristics of a transparent thin-film heater made of single-walled carbon nanotubes on a glass substrate. A simplified analysis model is developed for predicting the thermal behaviors of the heater and its validity is verified by numerical and experimental results. The analytic solution discloses that the key factors controlling steady thermal performance and transient thermal adjustment. For a thin heater of which the Biot number is very small, the temperature of the heater is determined by the applied gradient of electric potential, the sheet resistance of the nanotube film, and the surface heat transfer coefficient. The time scale required for transient heat-up is a function of the thermal mass of glass substrate and the surface heat transfer coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.