Accurate identification of the boundaries of organs or abnormal objects (e.g., tumors) in medical images is important in surgical planning and in the diagnosis and prognosis of diseases. In this study, we propose a deep learning-based method to segment lung areas in chest X-rays. The novel aspect of the proposed method is the self-attention module, where the outputs of the channel and spatial attention modules are combined to generate attention maps, with each highlighting those regions of feature maps that correspond to “what” and “where” to attend in the learning process, respectively. Thereafter, the attention maps are multiplied element-wise with the input feature map, and the intermediate results are added to the input feature map again for residual learning. Using X-ray images collected from public datasets for training and evaluation, we applied the proposed attention modules to U-Net for segmentation of lung areas and conducted experiments while changing the locations of the attention modules in the baseline network. The experimental results showed that our method achieved comparable or better performance than the existing medical image segmentation networks in terms of Dice score when the proposed attention modules were placed in lower layers of both the contracting and expanding paths of U-Net.
Recently, deep learning has been employed in medical image analysis for several clinical imaging methods, such as X-ray, computed tomography, magnetic resonance imaging, and pathological tissue imaging, and excellent performance has been reported. With the development of these methods, deep learning technologies have rapidly evolved in the healthcare industry related to hair loss. Hair density measurement (HDM) is a process used for detecting the severity of hair loss by counting the number of hairs present in the occipital donor region for transplantation. HDM is a typical object detection and classification problem that could benefit from deep learning. This study analyzed the accuracy of HDM by applying deep learning technology for object detection and reports the feasibility of automating HDM. The dataset for training and evaluation comprised 4492 enlarged hair scalp RGB images obtained from male hair-loss patients and the corresponding annotation data that contained the location information of the hair follicles present in the image and follicle-type information according to the number of hairs. EfficientDet, YOLOv4, and DetectoRS were used as object detection algorithms for performance comparison. The experimental results indicated that YOLOv4 had the best performance, with a mean average precision of 58.67.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.