Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.
Alternative splicing (AS) of protein-coding messenger RNAs is an essential regulatory mechanism in eukaryotic gene expression that controls the proper function of proteins. It is also implicated in the physiological regulation of mitochondria and various ion channels. Considering that mis-splicing can result in various human diseases by modifying or abrogating important physiological protein functions, a fine-tuned balance of AS is essential for human health. Accumulated data highlight the importance of alternatively spliced isoforms in various diseases, including neurodegenerative disorders, cancer, immune and infectious diseases, cardiovascular diseases, and metabolic conditions. However, basic understanding of disease mechanisms and development of clinical applications still require the integration and interpretation of physiological roles of AS. This review discusses the roles of AS in health and various diseases, while highlighting potential AS-targeting therapeutic applications.
Multiple myeloma (MM) is an incurable hematological malignancy that causes most patients to eventually relapse and die from their disease. The 20S proteasome inhibitor bortezomib has emerged as an effective drug for MM treatment; however, intrinsic and acquired resistance to bortezomib has already been observed in MM patients. We evaluated the involvement of mitochondria in resistance to bortezomib-induced cell death in two different MM cell lines (bortezomib-resistant KMS20 cells and bortezomib-sensitive KMS28BM cells). Indices of mitochondrial function, including membrane potential, oxygen consumption rate and adenosine-5 0 -triphosphate and mitochondrial Ca 21 concentrations, were positively correlated with drug resistance of KMS cell lines. Mitochondrial genes including CYPD, SOD2 and MCU were differentially expressed in KMS cells. Thus, changes in the expression of these genes lead to changes in mitochondrial activity and in bortezomib susceptibility or resistance, and their combined effect contributes to differential sensitivity or resistance of MM cells to bortezomib. In support of this finding, coadministration of bortezomib and 2-methoxyestradiol, a SOD inhibitor, rendered KMS20 cells sensitive to apoptosis. Our results provide new insight into therapeutic modalities for MM patients. Studying mitochondrial activity and specific mitochondrial gene expression in fresh MM specimens might help predict resistance to proapoptotic chemotherapies and inform clinical decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.