Due to the problem of global warming caused by greenhouse gas emissions, internal combustion engines in a lot of transportation systems are being electrified. For the railroad propulsion system, it is essential to apply a high-voltage/large-capacity energy source in order to ensure that the system operates properly. Thus, fuel-cell and rechargeable battery systems are being considered nowadays. The battery system can receive and store all regenerative energy to improve energy efficiency. In addition, since the battery pack of a propulsion system utilizing a hydrogen fuel-cell requires continuous charging/discharging, regardless of the railroad vehicle’s driving profile, the battery pack is designed to ensure its stable use and to minimize maintenance costs. Consideration should be given to the characteristics of railroad vehicles. In this research, a hydrogen fuel-cell hybrid railroad vehicle propulsion system specification, which has been studied recently, was applied to study the considerations in the design of high-voltage/large-capacity battery packs for railroad vehicles. In particular, the passive and active cell-balancing circuit and an algorithm for the stable management of battery packs for hybrid railroad vehicles in which a continuous charging/discharging operation is repeated are proposed and verified through experiments.
Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.