When NbC–30 wt% Co powder compact is sintered at various temperatures where NbC grains (with small amounts of Co) coexist with a liquid Co–NbC matrix, the NbC grains undergo a surface roughening transition with temperature increase and the grain growth changes from abnormal to normal growth. When sintered at 1400°C, the grains are polyhedral with sharp edges (and corners) and grow abnormally because their singular surfaces move by nucleation of surface steps. When sintered at 1600°C, the edges become round, indicating the surface roughening transition. The grains still grow abnormally, but their number density is larger than that at 1400°C because of the smaller surface step free energy. When sintered at 1820°C, the grains are nearly spherical, but the flat‐surface segments still remain. The grain growth at this temperature is nearly normal because of very small surface step free energy. The surface roughening transition is reversed when a specimen initially sintered at 1820°C is heat‐treated again at 1400°C, but some grains show transition shapes with nearly flat edges and slope discontinuities (shocks).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.