Low cycle fatigue tests were conducted to investigate fatigue behaviors of Type 316 stainless steel in 310 °C low oxygen water. In the tests, strain rates were 4 × 10−4, 8 × 10−5 s−1 and applied strain amplitudes were 0.4, 0.6, 0.8, and 1.0%. The test environment was pure water at a temperature of 310 °C, pressure of 15 MPa, and dissolved oxygen concentration of < 1 ppb. Type 316 stainless steel underwent a primary hardening, followed by a moderate softening for both strain rates in 310 °C low oxygen water. The primary hardening was much less pronounced and secondary hardening was observed at lower strain amplitude. On the other hand, the cyclic stress response in room temperature air exhibited gradual softening and did not show any hardening. The fatigue life of the studied steel in 310 °C low oxygen water was shorter than that of the statistical model in air. The reduction of fatigue life was enhanced with decreasing strain rate from 4 × 10−4 to 8 × 10−5 s−1.
The low cycle fatigue tests of SA508 Gr.1a low alloy steel were carried out to investigate the fatigue crack growth mechanisms in high temperature water. The fatigue life in 310oC deoxygenated water was shorter than that in air. Furthermore, the reduction in the fatigue life in 310oC deoxygenated water was enhanced with a decreasing strain rate, from 0.4 to 0.008 %/s. The ductile striations with the streamed down features, which may indicate the occurrence of the metal dissolution, were mainly observed at the strain rate of 0.008 %/s. And the flat facets and the brittle cracks, which may be evidences for the HIC, were primarily observed in the strain rate range from 0.04 to 0.4 %/s. From the analysis of microstructure, it is thought that the HIC contribute dominantly to the reduction in the fatigue life in the strain rate range from 0.04 to 0.4 %/s and the metal dissolution is mainly responsible for the reduction in the fatigue life at the strain rate of 0.008 %/s.
In terms of steel alloying elements, generally, nickel is used as an austenite stabilizing element to increase the toughness of steel. The low temperature materials, such as nickel alloy steels with a nickel content of 3.5% to 9%, stainless steel and Invar, show excellent toughness at low (173 K) and cryogenic (108 K) temperatures. In particular, in the shipbuilding industry, it is mainly used for liquefied ethane and Liquefied Natural Gas (LNG) carriers, and research on low-temperature steels are attracting attention again as regulations on environmental issues are strengthened in recent years. Therefore, in this study, fatigue and fracture performances of nickel alloy steel containing 9% or less among nickel alloy steels are evaluated. Moreover, we assess the Fatigue Ductile to Brittle Transition (FDBT) of nickel alloy steels based on crack tip opening displacement (CTOD). In order to discuss the fatigue and fracture performances of nickel alloy steels, microstructure analysis carried out. As a result, CTOD and Fatigue Crack Growth Rate (FCGR) of nickel alloy steels increases as nickel contents increase. In addition, FDBT of 9% nickel alloy steel is the lowest compared to other nickel alloy steels.
The low cycle fatigue tests of SA508 Gr.1a low alloy steel in 310oC deoxygenated water were conducted to investigate the effect of cyclic strain rate on the environmentally assisted cracking (EAC) mechanisms. The flattened striations and the blunt crack tip, which indicate the occurrence of the slip dissolution/oxidation, were mainly observed for the specimen tested at 0.008 %/s. On the other hand, the brittle cracks and the blunt main crack with microcracks, which are the evidences of the hydrogen-induced cracking (HIC), were observed for the specimens tested at 0.04 and 0.4 %/s. Through this study, it is thought that the slip dissolution/oxidation dominantly contributes to the reduction in the fatigue life at a strain rate of 0.008 %/s and the HIC is mainly responsible for the reduction in the fatigue life at strain rates of 0.04 and 0.4 %/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.