Biomaterials-based
biofabrication methods have gained much attention
in recent years. Among them, 3D cell printing is a pioneering technology
to facilitate the recapitulation of unique features of complex human
tissues and organs with high process flexibility and versatility.
Bioinks, combinations of printable hydrogel and cells, can be utilized
to create 3D cell-printed constructs. The bioactive cues of bioinks
directly trigger cells to induce tissue morphogenesis. Among the various
printable hydrogels, the tissue- and organ-specific decellularized
extracellular matrix (dECM) can exert synergistic effects in supporting
various cells at any component by facilitating specific physiological
properties. In this review, we aim to discuss a new paradigm of dECM-based
bioinks able to recapitulate the inherent microenvironmental niche
in 3D cell-printed constructs. This review can serve as a toolbox
for biomedical engineers who want to understand the beneficial characteristics
of the dECM-based bioinks and a basic set of fundamental criteria
for printing functional human tissues and organs.
The liver is an important organ and plays major roles in the human body. Because of the lack of liver donors after liver failure and drug-induced liver injury, much research has focused on developing liver alternatives and liver in vitro models for transplantation and drug screening. Although numerous studies have been conducted, these systems cannot faithfully mimic the complexity of the liver. Recently, three-dimensional (3D) cell printing technology has emerged as one of a number of innovative technologies that may help to overcome this limitation. However, a great deal of work in developing biomaterials optimized for 3D cell printing-based liver tissue engineering remains. Therefore, in this work, we developed a liver decellularized extracellular matrix (dECM) bioink for 3D cell printing applications and evaluated its characteristics. The liver dECM bioink retained the major ECM components of the liver while cellular components were effectively removed and further exhibited suitable and adjustable properties for 3D cell printing. We further studied printing parameters with the liver dECM bioink to verify the versatility and fidelity of the printing process. Stem cell differentiation and HepG2 cell functions in the liver dECM bioink in comparison to those of commercial collagen bioink were also evaluated, and the liver dECM bioink was found to induce stem cell differentiation and enhance HepG2 cell function. Consequently, the results demonstrate that the proposed liver dECM bioink is a promising bioink candidate for 3D cell printing-based liver tissue engineering.
Endothelial progenitor cells (EPCs) are a promising cell source for the treatment of several ischemic diseases for their potentials in neovascularization. However, the application of EPCs in cell-based therapy has shown low therapeutic efficacy due to hostile tissue conditions after ischemia. In this study, a bio-blood-vessel (BBV) is developed, which is produced using a novel hybrid bioink (a mixture of vascular-tissue-derived decellularized extracellular matrix (VdECM) and alginate) and a versatile 3D coaxial cell printing method for delivering EPC and proangiogenic drugs (atorvastatin) to the ischemic injury sites. The hybrid bioink not only provides a favorable environment to promote the proliferation, differentiation, and neovascularization of EPCs but also enables a direct fabrication of tubular BBV. By controlling the printing parameters, the printing method allows to construct BBVs in desired dimensions, carrying both EPCs and atorvastatin-loaded poly(lactic-co-glycolic) acid microspheres. The therapeutic efficacy of cell/drug-laden BBVs is evaluated in an ischemia model at nude mouse hind limb, which exhibits enhanced survival and differentiation of EPCs, increased rate of neovascularization, and remarkable salvage of ischemic limbs. These outcomes suggest that the 3D-printed ECM-mediated cell/drug implantation can be a new therapeutic approach for the treatment of various ischemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.