We demonstrated the feasibility of an amplified wavelength-division multiplexed passive optical network (WDM-PON) architecture based on broadband light source (BLS) seeded optical sources and a novel bidirectional reach extender. Our bidirectional reach extender could provide an amplification of both downstream and upstream signals as well as a BLS output for the upstream WDM signal generation. An error-free 1.25 Gb/s signal transmission over a 100-km long single-mode fiber was achieved in a bidirectional WDM-PON using BLS seeded reflective semiconductor optical amplifier (RSOA) sources.
In this work, we investigate gray to gray response time degradation of AMOLED display and design AMOLED pixel to improve gray to gray response time. The pixel designed here is that compensation method is source-follow type instead of diode connection. By using source-follow, we proposed new AMOLED pixel structure and fabricated 31_inch OLED TV that achieved good Gray-to-Gray response time with 0.043 millisecond levels through improvement of bright shortage and brightness drop. Compare to the previously compensation method using diode connection, Gray-to-Gray response time is decreased extremely. Therefore, this pixel structure was very suitable for frame rate, large size and high resolution OLED TV application.
We have evaluated the performances of bidirectional optical amplifiers which were suited for the costeffective implementation of amplified bidirectional passive optical networks (PONs). First, we measured the maximum gains of two simple bidirectional optical amplifiers implemented without using any optical components for the suppression of reflected signals. From the results, the maximum gains of two simple bidirectional amplifiers with a broadband light source (BLS) seeded optical source were limited to be 27 dB due to the reflection-induced in-band crosstalk, when the reflectance coefficients were measured to be -33 dB in both directions. Then, we have also implemented a bidirectional optical amplifier with two band splitters for the amplified bidirectional PON where the two different wavelength bands were allocated to the downstream and upstream signals transmission. In our measurement, we confirmed that the maximum gain of bidirectional optical amplifier with two band splitters could be increased to more than 30 dB owing to the efficient suppression of in-band crosstalk.
We have demonstrated an amplified wavelength-division multiplexed (WDM) passive optical network (PON) by using broadband light source (BLS) seeded optical sources and chirped fiber Bragg gratings (FBGs) based dispersion compensators. Chirped FBGs located at central office (CO) were fabricated and used as channel-by-channel dispersion compensators in order to mitigate the dispersion-induced distortion of both downstream and upstream signals. Owing to a low insertion loss of chirped FBG based dispersion compensator, the optical signal-to-noise ratio (OSNR) of the downstream signal could be improved to be ~28 dB. Thus, we re-confirmed that an error-free transmission of 1.25 Gb/s signals over a 100 km single-mode fiber (SMF) link could be achieved with a proposed amplified WDM-PON architecture. We have also evaluated the impact of various noises on the system's performance, and found that the low OSNR of the downstream signal would be a main limiting factor on the maximum reach of the proposed amplified WDM-PON architecture. From the measured ~13 dB improvement in OSNR of the downstream signal compared to our previously-proposed dispersion compensating module based scheme, we believe that the proposed architecture can accommodate a reach of longer than 100 km SMF link easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.