Abstract:The effect of mechanical activation on the copper leaching of copper sulfide, CuS, in 1 M HNO 3 (slurry density: 10 g/L) was investigated by analysis of the leachability and the apparent activation energy. Mechanical activation produced an increase in the leachability and a decrease of the activation energy in this leaching reaction. The leachability increased proportionally to the degree of mechanical activation, reaching 96.6% leaching within 60 min at 80 • C from CuS ground at 700 rpm for 15 min. This leaching process was controlled by surface chemical reaction following the shrinking-core model. The apparent activation energy of leaching for CuS (71.5 kJ/mol) in the range of 50 to 80 • C decreased with an increase of the degree of mechanical activation, reaching 44.3 kJ/mol for Cu leaching from CuS ground at 700 rpm for 15 min.
Abstract:The Al-alloying treated tungsten carbide (WC)-Co tool was subjected to grinding using a jaw crusher and planetary mill followed by three wet chemical treatment steps to establish an effective recycling process for WC scraps, especially those generated as bulky and hard scrap. This alloyed WC tool was readily ground to a powder of 1 mm or less and divided into two portions that were 150 µm in size. The wet chemical treatments enabled us to recover W to 69.44% from the under-sized 150 µm and also obtain WC powders from the over-sized 150 µm with a high purity of 98.9% or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.