Total phospholipid and its components were measured in lungs of the embryonic chick, and in tissue, lamellar bodies, and lavage fluid after hatching. Phosphatidylcholine (PC), the major phospholipid in surfactant, was fractionated and the amount and fatty acid composition of its disaturated (DSPC) component was determined. The synthetic rates of PC, DSPC, and other choline phospholipids were determined on days 14 and 19 of incubation from incorporation of 14C-choline. Choline pool size was also estimated at these times. Phospholipid content of the lung increased most rapidly after day 18 of incubation with the greatest increase in PC. The PC synthesized just prior to breathing was enriched in DSPC, which constituted 45% of PC on day 19 and only 30% on day 14. DSPC content was even lower in embryonic liver and yolk. Incorporation of 14C-choline in vitro into pulmonary PC, Sphingomyelin (Sphingo), and DSPC was greater in birds before breathing (day 19) than in the younger embryos. Choline pool size decreased between days 14 and 19 of incubation, but the synthetic rate of DSPC doubled in this interval. Increased accumulation and biosynthesis of pulmonary PC, Sphingo, and DSPC in lung tissue of the embryo paralleled appearance of lamellar bodies. In 5-6-week-old chickens the major pulmonary phospholipid was also DSPC. In lavage, 70% of PC was DSPC, predominantly dipalmitoyl PC. As in the mammalian lung, PC, especially its DSPC component, forms the major phospholipid of avian surfactant, and the synthesis of DSPC is specifically stimulated prior to breathing.
Iichthys rnirabilis after adaptation to salinities ranging from 170% SW to FW. Stabilities of these activities against freezing and deoxycholate solubilization and the temperature-dependence of activity rates were also investigated. Subcellular distribution and some kinetic properties of these activities, and of SDH were compared in branchial tissues of fish adapted to 170 % SW and to FW. 2. Na+-K+-ATPase was maximally active at a Na + concentration of 180 mM and K + concentration of 60 mM. This enzyme was least active in 100% SW-adapted animals, but showed elevated activity after adaptation to 170% SW and to FW. Gillichthys is unusual (but not unique) among euryhaline teleosts by displaying higher Na +-K+-ATPase in FW-than in SW-adapted animals. Greatest activity, however, was observed in the heavy microsomal fraction (34,000• of the 170% SW-adapted group. Maximum SDH activity was also observed in the mitochondrial fraction (25,000 • of 170% SW-adapted fish. 3. Activity of Ca § +-ATPase displayed a complex Ca + +-dependence. Two kinetic forms of this activity could be resolved, one with a high Ca + § (Kin=2.9 l-tM), the other having low Ca + +-affinity (Kin = 0.88 mM). The low-affinity activity was reduced
The actions of hormones on growth, cellular proliferation, and on synthetic rates of the major surfactant phospholipids, phosphatidylcholine (PC) and disaturated PC (DSPC), were studied in the lung of the chick embryo. Particular emphasis was placed on the effects of hypophysectomy, pituitary transplantation, and treatment with corticosterone (CORT). One study was concerned with hydrocortisone (HYCORT), estrogen (E2), thyroxine (T4), ovine prolactin (oPRL), and insulin. Hypophysectomy interfered with the normal gain in protein, the progressive dehydration of the embryonic lung, and also caused a reduction in the number of pulmonary cells on Days 16 and 18 of incubation. Absence of the pituitary gland diminished pulmonary PC by Day 16. Transplantation of one pituitary gland or exogenous CORT partially restored pulmonary phospholipid and PC (normalized per wet weight) in hypophysectomized (hypox) embryos. Transplantation also restored relative protein content in lungs of hypox individuals. Beyond this, transplantation was generally ineffective in reversing deficits of hypox individuals. All concentrations of CORT administered (30-100-300 micrograms) reduced the rate of pulmonary cell division. The highest dose was toxic as judged by its capacity to cause cellular death. Treatment of intact chicken embryos with CORT or E2 for two days stimulated incorporation of [14C]choline into PC and DSPC (the most surface-active component of PC) in the lungs of Day 17 embryos. CORT, but not E2, stimulated DSPC synthesis when treatment was increased to 3 days. Other hormones tested (T4, oPRL, insulin, and HYCORT) had no effect upon the rate of incorporation of [14C]choline into PC or DSPC. These results indicate that during ontogeny the avian lung becomes sensitive to CORT, and possibly E2, prior to 16 days of incubation. CORT, in particular, acts both to trigger the prehatching stimulation of surfactant phospholipid synthesis, especially the vital DSPC fraction, and to slow the rate of pulmonary cellular division coincident with biochemical differentiation of the surfactant system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.