The R environment provides a natural platform for developing new statistical methods due to the mathematical expressiveness of the language, the large number of existing libraries, and the active developer community. One drawback to R, however, is the learning curve; programming is a deterrent to non-technical users, who typically prefer graphical user interfaces (GUIs) to command line environments. Thus, while statisticians develop new methods in R, practitioners are often behind in terms of the statistical techniques they use as they rely on GUI applications. Meta-analysis is an instructive example; cutting-edge meta-analysis methods are often ignored by the overwhelming majority of practitioners, in part because they have no easy way of applying them. This paper proposes a strategy to close the gap between the statistical state-of-the-science and what is applied in practice. We present open-source meta-analysis software that uses R as the underlying statistical engine, and Python for the GUI. We present a framework that allows methodologists to implement new methods in R that are then automatically integrated into the GUI for use by end-users, so long as the programmer conforms to our interface. Such an approach allows an intuitive interface for non-technical users while leveraging the latest advanced statistical methods implemented by methodologists.
BackgroundMeta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs.ResultsHerein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots) and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF). The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI) or to the analytic modules.We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software).ConclusionWe have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.
State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the 'reasoning' behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER ) benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of "rationales" (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/ Commonsense Explanations (CoS-E)Where do you find the most amount of leafs? (a) Compost pile (b) Flowers (c) Forest (d) Field (e) Ground Movie ReviewsIn this movie, … Plots to take over the world. The acting is great! The soundtrack is run-of-the-mill, but the action more than makes up for it (a) Positive (b) Negative Evidence InferenceArticle Patients for this trial were recruited … Compared with 0.9% saline, 120 mg of inhaled nebulized furosemide had no effect on breathlessness during exercise. (a) Sig. decreased (b) No sig. difference (c) Sig. increased Prompt With respect to breathlessness, what is the reported difference between patients receiving placebo and those receiving furosemide? e-SNLI H A man in an orange vest leans over a pickup truck P A man is touching a truck (a) Entailment (b) Contradiction (c) Neutral
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.