A family of iridium(I) hydroxides of the form [Ir(cod)(NHC)(OH)] (cod = 1,5-cyclooctadiene, NHC = N-heterocyclic carbene) is reported. Single-crystal X-ray analyses and computational methods were used to explore the structural characteristics and steric properties of these new complexes. The model complex [Ir(cod)(IiPr)(OH)] (IiPr = 1,3-(diisopropyl)imidazol-2-ylidene) undergoes reaction with a wide variety of substrates including boronic acids and silicon compounds. In addition, O-H, N-H and C-H bond activation was achieved with alcohols, carboxylic acids, amines and various sp-, sp(2)- and sp(3)-hybridised carbon centres, giving access to a wide range of new Ir(I) complexes. These studies have allowed us to explore the exciting reactivity of this motif, revealing a versatile and useful synthon capable of activating important chemical bonds under mild (typically room temperature) conditions. No additives were required and, in the case of X-H bond activation, water was the only waste product, rendering this an atom efficient procedure for bond activation. This system has great potential for the construction of new catalytic cycles for organic synthesis and small-molecule activation.
The reactivity of a number of Ir(I) complexes towards CO2 is explored using [Ir(NHC)(OH)] as a key synthon. CO2 insertion into Ir-O and Ir-N bonds proved facile, yielding a number of Ir(I)-carbonates and -carbamates. Most importantly, reaction between CO2 and Ir(I)-OH led to isolation of the novel [{Ir(I)}2-(μ-κ(1):κ(2)-CO3)] complex.
The synthesis and catalytic activity of three well-defined monomeric rhodium(I) hydroxide complexes bearing N-heterocyclic carbene (NHC) ligands are reported. [Rh(cod)(ICy)(OH)] promoted the 1,4-addition of arylboronic acids to cyclic enones, with TONs and TOFs of 100,000 and 6,600 h(-1), respectively, at 0.001 mol% catalyst loadings. Mechanistic studies permitted the isolation of a phenylrhodium intermediate.
Alkene hydrosilylation and dehydrogenative silylation reactions, mediated by [Rh(cod)(NHC)(OH)] complexes (cod = 1,5-cyclooctadiene; NHC = N-heterocyclic carbene) are described. The study details a comparison of the catalytic activity and steric characteristics of four rhodium complexes bearing different NHC ligands. The novel [Rh(cod)(Ii-PrMe)(OH)] complex (Ii-PrMe = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidine) was designed to improve the reactivity of Rh(I)-hydroxides and proved to be a successful promoter of hydrosilylation and dehydrogenative silylation, displaying good stereo- and regiocontrol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.