Background-Atopic dermatitis (AD) is a chronic inflammatory skin disease that is characterized by a defective skin barrier function. Recent studies have reported mutations of the skin barrier gene encoding filaggrin in a subset of patients with AD.
The atopic immune response contributes to the skin barrier defect in AD; therefore, neutralization of IL-4 and IL-13 could improve skin barrier integrity.
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Genetic predisposition, epidermal barrier disruption, and dysregulation of the immune system are some of the critical components of AD. An impaired skin barrier may be the initial step in the development of the atopic march as well as AD, which leads to further skin inflammation and allergic sensitization. Type 2 cytokines as well as interleukin 17 and interleukin 22 contribute to skin barrier dysfunction and the development of AD. New insights into the pathophysiology of AD have focused on epidermal lipid profiles, neuroimmune interactions, and microbial dysbiosis. Newer therapeutic strategies focus on improving skin barrier function and targeting polarized immune pathways found in AD. Further understanding of AD pathophysiology will allow us to achieve a more precision medicine approach to the prevention and the treatment of AD.
Atopic dermatitis (AD) is characterized by a defective skin barrier which allows increased allergen and pathogen penetration. Loricrin (LOR) and involucrin (IVL) are proteins important for skin barrier formation and integrity. In this study, we demonstrate that the gene and protein expression of LOR and IVL is significantly decreased in acute (LOR: p<0.001; IVL: p<0.001) and non-lesional (LOR: p<0.001; IVL: p<0.001) skin of AD subjects, as compared to skin from healthy subjects. Using primary keratinocytes, we further demonstrate the down-regulatory effect of IL-4 and IL-13 -which are over-expressed in the skin of AD patients -on LOR and IVL expression in keratinocytes. Additionally, skin biopsies from signal transducer and activator of transcription (STAT)-6 transgenic mice were deficient in the expression and production of LOR and IVL. This study suggests that Th2 cytokines inhibit expression of LOR and IVL through a STAT-6 dependent mechanism.
The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responsing to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.