Decellularization of tissues or organs can provide an efficient strategy for preparing functional scaffolds for tissue engineering. Microstructures of native extracellular matrices and their biochemical compositions can be retained in the decellularized matrices, providing tissue-specific microenvironments for efficient tissue regeneration. Here, we report the versatility of liver extracellular matrix (LEM) that can be used for two-dimensional (2D) coating and three-dimensional (3D) hydrogel platforms for culture and transplantation of primary hepatocytes. Collagen type I (Col I) has typically been used for hepatocyte culture and transplantation. In this study, LEM was compared with Col I in terms of biophysical and mechanical characteristics and biological performance for enhancing cell viability, differentiation, and hepatic functions. Surface properties of LEM coating and mechanical properties and gelation kinetics of LEM hydrogel could be manipulated by adjusting the LEM concentration. In addition, LEM hydrogel exhibited improved elastic properties, rapid gelation, and volume maintenance compared to Col I hydrogel. LEM coating significantly improved hepatocyte functions such as albumin secretion and urea synthesis. More interestingly, LEM coating upregulated hepatic gene expression of human adipose-derived stem cells, indicating enhanced hepatic differentiation of these stem cells. The viability and hepatic functions of primary hepatocytes were also significantly improved in LEM hydrogel compared to Col I hydrogel both in vitro and in vivo. Albumin and hepatocyte transcription factor expression was upregulated in hepatocytes transplanted in LEM hydrogels. In conclusion, LEM can provide functional biomaterial platforms for diverse applications in liver tissue engineering by promoting survival and maturation of hepatocytes and hepatic commitment of stem cells. This study demonstrates the feasibility of decellularized matrix for both 2D coating and 3D hydrogel in liver tissue engineering.
An active site model of the amine:pyruvate aminotransferase (APA) from Vibrio fluvialis JS17 was constructed on the basis of the relationship between substrate structure and reactivity. Due to the broad substrate specificity of the APA, various amino donors (chiral and achiral amine, amino acid, and amino acid derivative) and amino acceptors (keto acid, keto ester, aldehyde, and ketone) were used to explore the active site structure. The result suggested a two-binding site model consisting of two pockets, one large (L) and the other small (S). The difference in the size of each binding pocket and strong repulsion for a carboxylate in the S pocket were key determinants to control its substrate specificity and stereoselectivity. The L pocket showed dual recognition mode for both hydrophobic and carboxyl groups as observed in the side-chain pockets of aspartate aminotransferase and aromatic aminotransferase. Comparison of the model with those of other aminotransferases revealed that the L and S pockets corresponded to carboxylate trap and side-chain pocket, respectively. The active site model successfully explains the observed substrate specificity as well as the stereoselectivity of the APA.
Amyloid beta protein (Abeta)-induced free radical-mediated neurotoxicity is known as a leading hypothesis for a cause of Alzheimer's disease. Abeta increased free radical production and lipid peroxidation in PC12 nerve cells, resulting in apoptosis and cell death. The protective effect of naringenin, a major flavanone constituent isolated from Citrus junos, against Abeta-induced neurotoxicity was investigated using PC12 cells. Pretreatment with isolated naringenin and vitamin C prevented the generation of the Abeta-induced reactive oxygen species. Naringenin resulted in the decrease of Abeta toxicity in a manner of concentration dependence, which was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. However, treatment with these antioxidants inhibited the Abeta-induced neurotoxic effect. The antiamnestic activity of naringenin in vivo was also evaluated using ICR mice with amnesia induced by scopolamine (1 mg/kg body weight). Naringenin, when administered to ICR mice at 4.5 mg/kg body weight, significantly ameliorated scopolamine-induced amnesia as measured in the passive avoidance test. Therefore, these results indicate that micromolecular Abeta-induced in vitro oxidative cell stress is reduced by naringenin and naringenin may be a useful chemopreventive agent against a neurodegenerative disease such as Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.