Poly(p-phenylene benzobisoxazole) (PBO) has been synthesized in the presence of singlewall carbon nanotubes (SWNTs) in poly(phosphoric acid) (PPA) using typical PBO polymerization conditions. PBO and PBO/SWNT lyotropic liquid crystalline solutions in PPA have been spun into fibers using dry-jet wet spinning. The tensile strength of the PBO/SWNT fiber containing 10 wt % SWNTs is about 50% higher than that of the control PBO fibers containing no SWNTs. The structure and morphology of these fibers have been studied.
Synthesis, structure, and properties of rigid‐rod polymers with special emphasis on poly(p‐phenylene benzobisoxazole) (PBO) and poly(p‐phenylene benzobisthiazole) (PBZT) have been reviewed. Recent studies on chemical modifications and molecular simulations have also been given. After nearly 20 years of research and development, PBO fiber was commercialized in the late 1990s. However, due to processing difficulties, the concept of the so called molecular composites has not been successful. Development of the high compressive strength M5 and dihydroxy‐PBI fibers clearly suggest that there is potential for further developing properties of this class of materials. Opto‐electronic properties have also been reviewed.Synthesis of PBZT.magnified imageSynthesis of PBZT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.