The effects of various extenders and cryoprotectants on movable spermatozoa ratio (MSR), spermatozoa velocity (SV) and duration of spermatozoa motility (DSM) of post-thawed spermatozoa were examined. The MSR, SV and DSM of post-thawed sperm in artificial seminal plasma (ASP) extender were higher than those in marine fish Ringer's solution (MFRS) extender (P \ 0.01) and was not significantly different from that of fresh sperm. No significant differences were observed in the motility parameters between fresh spermatozoa and frozen-thawed spermatozoa cryopreserved with ASP extender supplement 10% EG (ethylene glycol) cryoprotectant. Using the above method, yellow croaker semen was cryopreserved with extender ASP and 10% EG. As a result, at the spermatozoa/egg ratio of 100,000:1, the fertilization rate and hatching rate of the frozen-thawed spermatozoa cryopreserved for 1 week or 1 year in liquid nitrogen (45.7 ± 3.2% and 27.2 ± 5.0% or 37.5 ± 4.4% and 27.2 ± 5.0%) were similar to that of fresh spermatozoa (51.0 ± 3.1% and 36.7 ± 2.2%).There was a small alternation of shape in cryopreserved spermatozoa compared with fresh spermatozoa. In conclusion, the optimal conditions for yellow croaker semen cryopreservation are ASP extender supplement 10% EG cryoprotectant. This is the first report on semen cryopreservation of yellow croaker Larimichthys polyactis.
BackgroundProlactin (PRL) is a key hormone for osmoregulation in fish. Levels of PRL in the pituitary gland and plasma ion composition of clownfish seem to change to regulate their hydromineral balance during adaptation to waters of different salinities. In order to understand osmoregulatory mechanism and its association with growth performance and PRL in fish, the gene encoding PRL and its expression level in cinnamon clownfish Amphiprion melanopus upon acclimation to low salinity was analyzed.ResultsThe PRL gene of A. melanopus encoded a protein of 212 amino acid residues comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. Analysis of growth performance under different salinities of 34, 25, 15, and 10 ppt indicated that cinnamon clownfish could survive under salinities as low as 10 ppt. A higher rate of growth was observed at the lower salinities as compared to that of 34 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased to reach the peak level until 24 h of acclimation at 15 ppt, but decreased back as adaptation continued to 144 h. In contrast, levels of plasma Na+, Cl-, and osmolality decreased at the initial stage (4–8 h) of acclimation at 15 pt but increased back as adaptation continued till 144 h.ConclusionCinnamon clownfish could survive under salinities as low as 10 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased during the initial stage of acclimation but decreased back to the normal level as adaptation continued. An opposite pattern of changes - decrease at the beginning followed by an increase - in the levels of plasma Na+, Cl-, and osmolality was found upon acclimation to low salinity. The results suggest an involvement of PRL in the processes of osmoregulation and homeostasis in A. melanopus.
We isolated the warm temperature acclimation-related protein 65-kDa (Wap65) cDNA from the liver of black porgy and investigated the expression by increasing water temperature in black porgy, Acanthopagrus schlegeli. Black porgy Wap65 full-length cDNA consists of 1,338 nucleotides, including an open reading frame, predicted to encode a protein of 425 amino acids and showed high homology to pufferfish (79%), Medaka (73%), carp (70%), and goldfish (68%) Wap65. Increase in water temperature (20 degrees C --> 30 degrees C; 1 degrees C/day) induced the rise of Wap65 mRNA expression in liver of black porgy. Also, the levels of cortisol and glucose in plasma were significantly higher at 30 degrees C than at 20 degrees C. To determine the high water temperature stressor specificity of the induction of Wap65, black porgy were transferred from seawater (SW) to freshwater (FW) for 24 hr. Wap65 expression was not detected when the fish were transferred from SW to FW (in fish transferred from SW to FW), although the levels of cortisol and glucose in plasma were increased. These results suggest that increase in Wap65 gene is related to high water temperature stress and play important roles in high water temperature environment of black porgy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.