The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121 degrees C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0-10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digestibility. Hemicellulose recovery was 62-90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10-20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification.
Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 3(3) orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 degrees C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.
Extraction characteristics are shown for trioctylphosphine oxide (TOPO) dissolved in alkane for recovery of acetic acid from dilute water solution and hardwood-derived hemicellulose extracts. The recovery of acetic acid with TOPO is significantly influenced by the pH in the aqueous phase and lightly affected by temperature. In a one-stage extraction, 76.0% of the acetic acid could be extracted below pH 3. The yield of fractional extractions increase with increasing TOPO concentration in alkane and with increasing acetic acid concentration in the aqueous phase. It was found that for dilute extractions carried out at 708C and pH 1, the solvent extraction is effective at 37% TOPO in alkane (w/w) and that little improvement is realized by further increases in TOPO concentration. Partition coefficients for green liquor and hot water extracts ranged between 2.0 and 2.5 at the tested conditions. Fermentation of hemicellulose extracts that had been treated with TOPO for removal of acetic acid was tested to determine whether TOPO processing resulted in any positive or adverse affects on the microbial activity. Fermentation of TOPO-treated green liquor hemicellulose extract with Pichia stipitis resulted in improved ethanol production relative to untreated extract. Accordingly, placement of TOPO extraction after hydrolysis and prior to fermentation is optimal for acetic acid recovery and maintenance of fermentation rates.
Forest biomass is a promising resource for future biofuels and bioproducts. Pre-pulping extraction of hemicellulose by alkaline (Green Liquor) pretreatment produces a neutral-pH extract containing hemicellulose-derived oligomers. A near-term option for use of this extract is to hydrolyze the oligomers to fermentable monomer sugars. Chips of mixed northern hardwoods were cooked in a rocking digester at 160 degrees C for 110 min in Green Liquor at a concentration of 3% Na2O equivalent salts on dry wood. The mass of wood extracted into the Green Liquor extract was approximately 11.4% of the debarked wood mass, which resulted in a dilute solution of oligomeric hemicelluloses sugars. The concentration of the extract was increased through partial evaporation prior to hydrolysis. Dilute sulfuric acid hydrolysis was applied at conditions ranging from 100 to 160 degrees C, 2% to 6% (w/v) H2SO4, and 2- to 258-min residence time. The maximum fermentable sugar concentration achieved from evaporated extract was 10.7 g/L, representing 90.7% of the maximum possible yield. Application of the biomass pretreatment severity function to the hydrolysis results proved to offer a relatively poor prediction of temperature and reaction time interaction. The combined severity function, which incorporates reaction time, temperature, and acid concentration, did prove to provide a useful means of trading off the combined effects of these three variables on total sugar yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.