The Sr segregation
at the surface of a perovskite La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) oxygen
electrode is detrimental to the electrochemical performance and durability
of energy conversion devices such as solid oxide fuel cells. However,
a quantitative correlation of degradation of the oxygen surface exchange
kinetics with Sr precipitation formation at the LSCF surface is not
clearly understood yet. Herein, the correlation of the time-dependent
degradation mechanisms of the LSCF catalysts with respect to Sr segregation
phenomenon at the surface were investigated at 800 °C for a prolonged
annealing time (∼800 h) by combining in situ electrochemical
measurements, and ex situ chemical and structural analyses at the
multiscale. The in situ monitored surface exchange coefficient (k
chem) was found to drastically drop by ∼86%
over the 800 h, and it was accompanied by the formation of Sr-containing
secondary phases on the bulk LSCF surface, as expected. However, the
estimated coverage of Sr segregation on the LSCF surface was only
∼15%, even after 800 h of aging time, showing significant deviation
from the k
chem degradation rate (∼86%).
The surface chemistry evolution at the clean surface area, which is
believed to be electrochemically active, was further analyzed on the
nanoscale. The quantified results showed that the Sr elemental fraction
of the A-site at the outermost surface of the LSCF samples was becoming
deficient from ∼4.0 at 0 h to ∼0.27 at 800 h annealing.
Interestingly, the time-dependent behavioral tendencies between k
chem degradation and surface Sr fractional changes
were highly analogous. Thus, our results suggest that this Sr deficiency
at the clean surface region more dominantly impacts the degradation
process rather than an electrochemical activity passivation by the
SrO
x
precipitates, which has been shown
to be a major degradation mechanism of LSCF performance.
Highly conductive Dy and Y co-doped bismuth oxides combined with La0.8Sr0.2MnO3−δ significantly enhanced the ORR and OER as oxygen electrodes for reversible SOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.