N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.
There are two alternative pathways leading to methionine synthesis in microorganisms: The transsulfuration pathway involves cystathionine as the intermediate and utilizes cysteine as the sulfur source, but the direct sulfhydrylation pathway bypasses cystathionine and uses inorganic sulfur instead. While most microorganisms synthesize methionine via either one of these pathways, Corynebacterium glutamicum utilizes both pathways, which appear to be fully functional. In C. glutamicum, each pathway is catalyzed by independent enzymes and is tightly regulated by methionine. Although the physiological significance of parallel pathways remains to be elucidated, their presence suggests metabolic flexibility and efficient adaptation of the organism to its environment.
A novel regulatory gene, which performs an essential function in sulfur metabolism, has been identified in Corynebacterium ammoniagenes and was designated cmaR (cysteine and methionine regulator in C. ammoniagenes). The cmaR-disrupted strain (DcmaR) lost the ability to grow on minimal medium, and was identified as a methionine and cysteine double auxotroph. The mutant strain proved unable to convert cysteine to methionine (and vice versa), and lost the ability to assimilate and reduce sulfate to sulfide. In the DcmaR strain, the mRNAs of the methionine biosynthetic genes metYX, metB and metFE were significantly reduced, and the activities of the methionine biosynthetic enzymes cystathionine c-synthase, O-acetylhomoserine sulfhydrylase, and cystathionine b-lyase were relatively low, thereby suggesting that the cmaR gene exerts a positive regulatory effect on methionine biosynthetic genes. In addition, with the exception of cysK, reduced transcription levels of the sulfur-assimilatory genes cysIXYZ and cysHDN were noted in the cmaR-disrupted strain, which suggests that sulfur assimilation is also under the positive control of the cmaR gene. Furthermore, the expression of the cmaR gene itself was strongly induced via the addition of cysteine or methionine alone, but not the introduction of both amino acids together to the growth medium. In addition, the expression of the cmaR gene was enhanced in an mcbR-disrupted strain, which suggests that cmaR is under the negative control of McbR, which has been identified as a global regulator of sulfur metabolism. DNA binding of the purified CmaR protein to the promoter region of its target genes could be demonstrated in vitro. No metabolite effector was required for the protein to bind DNA. These results demonstrated that the cmaR gene of C. ammoniagenes plays a role similar to but distinct from that of the functional homologue cysR of Corynebacterium glutamicum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.