Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule.
Intestinal enteroids are ex vivo primary cultured single-layer epithelial cell spheroids of average diameter ∼150 μm with luminal surface facing inward. Measurement of enteroid swelling in response to secretagogues has been applied to genetic testing in cystic fibrosis and evaluation of drug candidates for cystic fibrosis and secretory diarrheas. The current measurement method involves manual addition of drugs and solutions to enteroids embedded in a Matrigel matrix and estimation of volume changes from confocal images of fluorescently stained enteroids. We developed a microfluidics platform for efficient trapping and immobilization of enteroids for quantitative measurement of volume changes. Multiple enteroids are trapped in a “pinball machine-like” array of polydimethylsiloxane posts for measurement of volume changes in unlabeled enteroids by imaging of an extracellular, high-molecular weight fluorescent dye. Measurement accuracy was validated using slowly expanding air bubbles. The method was applied to measure swelling of mouse jejunal enteroids in response to an osmotic challenge and cholera toxin-induced chloride secretion. The microfluidics platform allows for parallel measurement of volume changes on multiple enteroids during continuous superfusion, without an immobilizing matrix, and for quantitative volume determination without chemical labeling or assumptions about enteroid shape changes during swelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.