This paper presents a new fuzzy sliding mode controller (FSMC) to improve control performances in the presence of uncertainties related to model errors and external disturbance (UAD). As a first step, an adaptive control law is designed using Lyapunov stability analysis. The control law can update control parameters of the FSMC with a disturbance estimator (DE) in which the closed-loop stability and finite-time convergence of tracking error are guaranteed. A solution for estimating the compensative quantity of the impact of UAD on a control system and a set of solutions are then presented in order to avoid the singular cases of the fuzzy-based function approximation, increase convergence ability, and reduce the calculating cost. Subsequently, the effectiveness of the proposed controller is verified through the investigation of vibration control performances of a semi-active vehicle suspension system featuring a magnetorheological damper (MRD). It is shown that the proposed controller can provide better control ability of vibration control with lower consumed power compared with two existing fuzzy sliding mode controllers.
A very flexible structure with a tunable stiffness controlled by an external magnetic stimulus is presented. The proposed structure is fabricated using two magnetic-responsive materials, namely a magnetorheological elastomer (MRE) as a skin layer and a magnetorheological fluid (MRF) as a core to fill the void channels of the skin layer. After briefly describing the field-dependent material characteristics of the MRE and MRF, the fabrication procedures of the structure are provided in detail. The MRE skin layer is produced using a precise mold with rectangular void channels to hold the MRF. Two samples are produced, namely with and without MRF, to evaluate the stiffness change attributed to the MRF. A magnetic field is generated using two permanent magnets attached to a specialized jig in a universal tensile machine. The force-displacement relationship of the two samples are measured as a function of magnetic flux density. Stiffness change is analyzed at two different regions, namely a small and large deformation region. The sample with MRF exhibits much higher stiffness increases in the small deformation region than the sample without MRF. Furthermore, the stiffness of the sample with MRF also increases in the large deformation region, while the stiffness of the sample without MRF remains constant. The inherent and advantageous characteristics of the proposed structure are demonstrated through two conceptual applications, namely a haptic rollable keyboard and a smart braille watch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.