The Simple Ocean Data Assimilation (SODA) reanalysis (1958-2001) is used to investigate the decadal variability in the equatorial thermocline in the Pacific. Whereas the thermocline depth exhibits weak variation at decadal time scales, the temperature change in the vicinity of the thermocline in the western Pacific is significant and has a vertical scale of; 150 m. Based on a modal decomposition of the model variability, it is shown that such temperature change can be interpreted to a large extent as vertical displacements of the isotherms associated with the Kelvin and first meridional Rossby waves of the first three baroclinic modes. This indicates that decadal change at the subsurface in the warm pool region may be forced by the winds, consistent with the results of a multimode linear model simulation. The decadal mode of vertical temperature can be described by the first two dominant statistical modes (EOFs): the first mode is associated with changes in the slope of the thermocline (swallowing in the western-central Pacific and deepening in the eastern Pacific), representative of the 1976/77 climate shift and ahead of the ENSO modulation; and the second mode corresponds to a basinwide uplift of the thermocline and behind the ENSO modulation. It is further shown that the subsurface temperature in the warm pool region is negatively skewed, which results from the ENSO asymmetry. The results are consistent with the hypothesis of change in mean state resulting from the residual effect of the asymmetric ENSO variability
We investigate the natural variability of summer Korean heat waves through a long‐term (500 year) unforced simulation using the Community Climate System Model version 3. A total of 82 extreme heat wave frequency (HWF) years are identified with positive barotropic geopotential height (GPH) anomalies over the Korean Peninsula. These anomalies represent the most important atmospheric pattern that causes Korean heat waves via adiabatic warming by anomalous subsidence. From a composite analysis of the extreme Korean HWF years, the silk road pattern (SRP) and central Pacific (CP) sea surface temperature (SST) anomalies are selected as the driving factors of extreme Korean heat waves. The positive SRP is a west–east upper‐level Rossby wave train from the North Atlantic to East Asia under which positive barotropic GPH anomalies develop over the Korean Peninsula, thereby producing extreme heat waves. Cold CP SST anomalies induce cyclonic circulation and enhance convection over the subtropical western North Pacific through wind–evaporation–SST feedback, thereby acting as a source of the Pacific–Japan teleconnection pattern. They also cause positive barotropic GPH anomalies over the Korean Peninsula and intensify surface warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.