Aspirin-intolerant asthma (AIA) is a rare condition that is characterized by the development of bronchoconstriction in asthmatic patients after ingestion of non-steroidal anti-inflammatory drugs including aspirin. However, the underlying mechanisms of AIA occurrence are still not fully understood. To identify the genetic variations associated with aspirin intolerance in asthmatics, the first stage of genome-wide association study with 109,365 single nucleotide polymorphisms (SNPs) was undertaken in a Korean AIA (n = 80) cohort and aspirin-tolerant asthma (ATA, n = 100) subjects as controls. For the second stage of follow-up study, 150 common SNPs from 11 candidate genes were genotyped in 163 AIA patients including intermediate AIA (AIA-I) subjects and 429 ATA controls. Among 11 candidate genes, multivariate logistic analyses showed that SNPs of CEP68 gene showed the most significant association with aspirin intolerance (P values of co-dominant for CEP68, 6.0×10−5 to 4.0×10−5). All seven SNPs of the CEP68 gene showed linkage disequilibrium (LD), and the haplotype of CEP68_ht4 (T-G-A-A-A-C-G) showed a highly significant association with aspirin intolerance (OR = 2.63; 95% CI = 1.64–4.21; P = 6.0×10−5). Moreover, the nonsynonymous CEP68 rs7572857G>A variant that replaces glycine with serine showed a higher decline of forced expiratory volume in 1s (FEV1) by aspirin provocation than other variants (P = 3.0×10−5). Our findings imply that CEP68 could be a susceptible gene for aspirin intolerance in asthmatics, suggesting that the nonsynonymous Gly74Ser could affect the polarity of the protein structure.
BackgroundsTwo SNPs in melatonin receptor 1B gene, rs10830963 and rs1387153 showed significant associations with fasting plasma glucose levels and the risk of Type 2 Diabetes Mellitus (T2DM) in previous studies. Since T2DM and gestational diabetes mellitus (GDM) share similar characteristics, we suspected that the two genetic polymorphisms in MTNR1B may be associated with GDM, and conducted association studies between the polymorphisms and the disease. Furthermore, we also examined genetic effects of the two polymorphisms with various diabetes-related phenotypes.MethodsA total of 1,918 subjects (928 GDM patients and 990 controls) were used for the study. Two MTNR1B polymorphisms were genotyped using TaqMan assay. The allele distributions of SNPs were evaluated by x2 models calculating odds ratios (ORs), 95% confidence intervals (CIs), and corresponding P values. Multiple regressions were used for association analyses of GDM-related traits. Finally, conditional analyses were also performed.ResultsWe found significant associations between the two genetic variants and GDM, rs10830963, with a corrected P value of 0.0001, and rs1387153, with the corrected P value of 0.0008. In addition, we also found that the two SNPs were associated with various phenotypes such as homeostasis model assessment of beta-cell function and fasting glucose levels. Further conditional analyses results suggested that rs10830963 might be more likely functional in case/control analysis, although not clear in GDM-related phenotype analyses.ConclusionThere have been studies that found associations between genetic variants of other genes and GDM, this is the first study that found significant associations between SNPs of MTNR1B and GDM. The genetic effects of two SNPs identified in this study would be helpful in understanding the insight of GDM and other diabetes-related disorders.
BackgroundInterleukin-8 (IL-8) is a potent chemo-attractant cytokine responsible for neutrophil infiltration in lungs with idiopathic pulmonary fibrosis (IPF). The IL-8 protein and mRNA expression are increased in the lung with IPF. We evaluated the effect of single nucleotide polymorphisms (SNPs) of the IL-8 gene on the risk of IPF.MethodsOne promoter (rs4073T>A) and two intronic SNPs (rs2227307T>G and rs2227306C>T) of the IL-8 genes were genotyped in 237 subjects with IPF and 456 normal controls. Logistic regression analysis was applied to evaluate the association of these SNPs with IPF. IL-8 in BAL fluids was measured using a quantitative sandwich enzyme immunoassay, and promoter activity was assessed using the luciferase reporter assay.ResultsThe minor allele frequencies of rs4073T>A and rs2227307T>G were significantly lower in the 162 subjects with surgical biopsy-proven IPF and 75 subjects with clinical IPF compared with normal controls in the recessive model (OR = 0.46 and 0.48, p = 0.006 and 0.007, respectively). The IL-8 protein concentration in BAL fluids significantly increased in 24 subjects with IPF compared with 14 controls (p = 0.009). Nine IPF subjects homozygous for the rs4073 T>A common allele exhibited higher levels of the IL-8 protein compared with six subjects homozygous for the minor allele (p = 0.024). The luciferase activity of the rs4073T>A common allele was significantly higher than that of the rs4073T>A minor allele (p = 0.002).ConclusionThe common allele of a promoter SNP, rs4073T>A, may increase susceptibility to the development of IPF via up-regulation of IL-8.
The aim of the present study was to develop a diagnostic set of single-nucleotide polymorphisms (SNPs) for discriminating aspirin-exacerbated respiratory disease (AERD) from aspirin-tolerant asthma (ATA) using the genome-wide association study (GWAS) data; the GWAS data were filtered according to p-values and odds ratios (ORs) using PLINK software, and the 10 candidate SNPs most closely associated with AERD were selected, based on 100 AERD and 100 ATA subjects. Using multiple logistic regression and receiver-operating characteristic (ROC) curve analysis, eight SNPs were chosen as the best model for distinguishing between AERD and ATA. The relative risk for AERD in each subject was calculated based on the relative risk of each of the eight SNPs. Ten of the original 109,365 SNPs highly associated (filtered with p<0.001 and ORs) with the risk for AERD were selected. A combination model of the eight SNPs among the 10 SNPs showed the highest area under the ROC curve of 0.9. The overall relative risk for AERD based on the eight SNPs was significantly different between the AERD and ATA groups (p=2.802E-21), and the sensitivity and specificity were 78% and 88%, respectively. The candidate set of eight SNPs may be useful in predicting the risk for AERD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.