Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testing and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.