Vertical sleeve gastrectomy (VSG) is one of the most commonly performed clinical bariatric surgeries used for the remission of obesity and diabetes. However, the precise molecular mechanism by which VSG exerts its beneficial effects remains elusive. Here we report that the membrane-bound G protein-coupled bile acid receptor, GPBAR-1 (also known as TGR5), is required to mediate the effects of anti-obesity, anti-hyperglycemia, and improvements of fatty liver of VSG in mice. In the absence of TGR5, the beneficial metabolic effects of VSG in mice are lost. Moreover, we found that expression of TGR5 was significantly increased after VSG, and VSG alters both BA levels and composition in mice, resulting in enhancement of TGR5 signaling in the ileum and brown adipose tissues, concomitant with improved glucose control and increased energy expenditure. Conclusion Our study elucidates a novel underlying mechanism by which VSG achieves its postoperative therapeutic effects through enhanced TGR5 signaling.
Recent technological advances have re‐invigorated the interest in nuclear translation (NT), but the underlying mechanisms and functional implications of NT remain unknown. Here we show that NT is enhanced in malignant cancer cells and is associated with rapid cell growth. Nuclear ribopuromycylation analyses in a panel of diverse cell lines revealed that NT is scarce in normal immortalized cells, but is ubiquitous and robust in malignant cancer cells. Moreover, NT occurs in the nucleolus and requires normal nucleolar function. Intriguingly, NT is reduced by cellular stresses and anti‐tumor agents and positively correlates with cancer cell proliferation and growth. By using a modified puromycin‐associated nascent chain proteomics, we further identified numerous oncoproteins that are preferentially translated in the nucleus, such as transforming growth factor‐beta 2 (TGFB2) and nucleophosmin 1 (NMP1). Specific overexpression of TGFB2 and NMP1 messenger RNAs in the nucleus can increase their protein levels and promote tumorigenesis. These findings establish a previously unknown link between NT and malignancy and suggest that cancer cells might have adapted a mechanism of NT to support their need for rapid growth, which highlight the potential of NT in tumorigenesis and might also open up new possibilities for therapeutic targeting of cancer‐specific cellular functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.